tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. Practically all magnesy neodymowe in our store are available for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight, solid steel enclosure are excellent for use in variable and difficult weather, including during snow and rain read...

magnetic holders

Magnetic holders can be used to improve manufacturing, underwater exploration, or locating meteorites made of ore read...

We promise to ship ordered magnets if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships in 3 days

CM PML-3 / N45 - magnetic gripper

magnetic gripper

Catalog no 100226

GTIN: 5906301812623

5

Weight

9400 g

Magnetization Direction

↑ axial

Load capacity

300 kg / 2941.99 N

938.99 with VAT / pcs + price for transport

763.41 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
763.41 ZŁ
938.99 ZŁ
price from 5 pcs
725.24 ZŁ
892.04 ZŁ
price from 10 pcs
687.07 ZŁ
845.09 ZŁ

Do you have questions?

Contact us by phone +48 888 99 98 98 otherwise send us a note by means of our online form our website.
Lifting power along with appearance of a neodymium magnet can be checked on our force calculator.

Same-day shipping for orders placed before 14:00.

CM PML-3 / N45 - magnetic gripper

Specification/characteristics CM PML-3 / N45 - magnetic gripper
properties
values
Cat. no.
100226
GTIN
5906301812623
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
9400 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
300 kg / 2941.99 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N45

properties
values
units
remenance Br [Min. - Max.] ?
13.2-13.7
kGs
remenance Br [Min. - Max.] ?
1320-1370
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
43-45
BH max MGOe
energy density [Min. - Max.] ?
342-358
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic lifter works based on permanent neodymium magnets and does not require electrical power. Control involves changing the pole arrangement inside the body with a lever. It is a safe solution because the magnet will not drop the load without power.
Catalog parameters refer to optimal conditions (thick, clean steel). Force is affected by material thickness (the thinner, the weaker it holds) and surface contamination. When selecting a lifter, check the capacity chart and keep a safety margin.
The bottom part construction allows gripping cylindrical elements. This enables stable lifting of both flat sheets and pipes or shafts. However, remember that lifting capacity for round elements is usually 50% less than for flat ones.
The device must withstand a load three times greater than nominal during tests. This means the breakaway force is three times higher than the declared capacity. Always follow health and safety rules for vertical transport. Products have a CE declaration of conformity.
The key to long life is caring for the working surface (foot). Mechanical damage to the foot can drastically reduce grip force. We recommend periodic technical inspections.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their superior power, neodymium magnets have these key benefits:

  • They have stable power, and over around ten years their attraction force decreases symbolically – ~1% (in testing),
  • They remain magnetized despite exposure to strong external fields,
  • By applying a shiny layer of silver, the element gains a sleek look,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for fine forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
  • Key role in cutting-edge sectors – they find application in HDDs, rotating machines, diagnostic apparatus as well as sophisticated instruments,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to external force, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and increases its overall durability,
  • They lose magnetic force at high temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a moist environment. For outdoor use, we recommend using sealed magnets, such as those made of polymer,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing threads directly in the magnet,
  • Possible threat linked to microscopic shards may arise, if ingested accidentally, which is important in the protection of children. Furthermore, minuscule fragments from these products have the potential to complicate medical imaging after being swallowed,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Highest magnetic holding forcewhat contributes to it?

The given strength of the magnet corresponds to the optimal strength, calculated under optimal conditions, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Determinants of practical lifting force of a magnet

Practical lifting force is dependent on elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular pulling force, however under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet and the plate reduces the lifting capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Depending on how huge the neodymium magnets are, they can lead to a cut or a fracture.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are highly susceptible to damage, leading to their cracking.

Neodymium magnets are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Pay attention!

To show why neodymium magnets are so dangerous, see the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98