CM PML-3 / N45 - magnetic gripper
magnetic gripper
Catalog no 100226
GTIN: 5906301812623
Weight
9400 g
Magnetization Direction
↑ axial
Load capacity
300 kg / 2941.99 N
938.99 ZŁ with VAT / pcs + price for transport
763.41 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Contact us by phone
+48 888 99 98 98
if you prefer contact us through
request form
the contact page.
Parameters as well as structure of magnets can be analyzed using our
modular calculator.
Same-day processing for orders placed before 14:00.
CM PML-3 / N45 - magnetic gripper
Magnetic properties of material N45
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- Their power remains stable, and after around 10 years, it drops only by ~1% (according to research),
- Their ability to resist magnetic interference from external fields is among the best,
- Thanks to the shiny finish and nickel coating, they have an elegant appearance,
- They have exceptional magnetic induction on the surface of the magnet,
- Thanks to their enhanced temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- The ability for accurate shaping and customization to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
- Wide application in new technology industries – they are utilized in data storage devices, electromechanical systems, clinical machines or even high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them useful in small systems
Disadvantages of magnetic elements:
- They can break when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall resistance,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a humid environment – during outdoor use, we recommend using encapsulated magnets, such as those made of polymer,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing complex structures directly in the magnet,
- Health risk due to small fragments may arise, in case of ingestion, which is significant in the context of child safety. It should also be noted that miniature parts from these magnets can disrupt scanning if inside the body,
- In cases of mass production, neodymium magnet cost may be a barrier,
Magnetic strength at its maximum – what it depends on?
The given lifting capacity of the magnet represents the maximum lifting force, assessed in a perfect environment, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a polished side
- in conditions of no clearance
- with vertical force applied
- in normal thermal conditions
Practical lifting capacity: influencing factors
The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under perpendicular forces, whereas under parallel forces the load capacity is reduced by as much as fivefold. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.
Handle Neodymium Magnets Carefully
Keep neodymium magnets away from the wallet, computer, and TV.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Maintain neodymium magnets far from children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnetic are highly susceptible to damage, resulting in shattering.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
If joining of neodymium magnets is not under control, then they may crumble and crack. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.
Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Pay attention!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.
