tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our proposal. Practically all magnesy neodymowe in our store are available for immediate delivery (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to buy strong neodymium magnet? Magnetic holders in airtight, solid steel casing are ideally suited for use in difficult weather conditions, including snow and rain see...

magnetic holders

Magnetic holders can be applied to facilitate manufacturing, underwater exploration, or locating meteorites from gold more information...

Enjoy delivery of your order on the same day by 2:00 PM on business days.

Dhit sp. z o.o.
Product available Ships tomorrow

CM PML-3 / N45 - magnetic gripper

magnetic gripper

Catalog no 100226

GTIN: 5906301812623

5

Weight

9400 g

Magnetization Direction

↑ axial

Load capacity

300 kg / 2941.99 N

938.99 with VAT / pcs + price for transport

763.41 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
763.41 ZŁ
938.99 ZŁ
price from 5 pcs
725.24 ZŁ
892.04 ZŁ
price from 10 pcs
687.07 ZŁ
845.09 ZŁ

Looking for a better price?

Call us +48 888 99 98 98 alternatively contact us using our online form the contact form page.
Lifting power as well as form of magnets can be analyzed using our modular calculator.

Same-day shipping for orders placed before 14:00.

CM PML-3 / N45 - magnetic gripper

Specification/characteristics CM PML-3 / N45 - magnetic gripper
properties
values
Cat. no.
100226
GTIN
5906301812623
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
9400 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
300 kg / 2941.99 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N45

properties
values
units
remenance Br [Min. - Max.] ?
13.2-13.7
kGs
remenance Br [Min. - Max.] ?
1320-1370
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
43-45
BH max MGOe
energy density [Min. - Max.] ?
342-358
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The lifter needs no battery or cable, it works mechanically. Field activation occurs by turning the manual lever. The load will not fall automatically.
Catalog parameters refer to optimal conditions (thick, clean steel). In reality, capacity depends on sheet thickness, roughness, and air gap (dirt, rust). For safety, oversize the device relative to the load weight.
The bottom part construction allows gripping cylindrical elements. This enables stable lifting of both flat sheets and pipes or shafts. However, remember that lifting capacity for round elements is usually 50% less than for flat ones.
The device must withstand a load three times greater than nominal during tests. This means the breakaway force is three times higher than the declared capacity. Always follow health and safety rules for vertical transport. Products have a CE declaration of conformity.
Regularly check the condition of the magnetic foot. Dirt and filings should be removed after each use. We recommend periodic technical inspections.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They do not lose their strength approximately 10 years – the reduction of power is only ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is among the best,
  • Because of the lustrous layer of silver, the component looks high-end,
  • Magnetic induction on the surface of these magnets is notably high,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • The ability for accurate shaping or customization to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
  • Significant impact in cutting-edge sectors – they find application in data storage devices, electric drives, healthcare devices as well as high-tech tools,
  • Thanks to their power density, small magnets offer high magnetic performance, in miniature format,

Disadvantages of rare earth magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall strength,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of plastic for outdoor use,
  • Limited ability to create internal holes in the magnet – the use of a housing is recommended,
  • Safety concern due to small fragments may arise, if ingested accidentally, which is important in the protection of children. Moreover, minuscule fragments from these products may interfere with diagnostics when ingested,
  • In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,

Detachment force of the magnet in optimal conditionswhat it depends on?

The given strength of the magnet means the optimal strength, calculated in ideal conditions, specifically:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Magnet lifting force in use – key factors

The lifting capacity of a magnet depends on in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the load capacity is reduced by as much as 75%. Additionally, even a small distance {between} the magnet and the plate lowers the holding force.

Handle with Care: Neodymium Magnets

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

 It is important to keep neodymium magnets out of reach from youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

In the case of holding a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are incredibly fragile, they easily break and can crumble.

Magnets made of neodymium are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Safety rules!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98