e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. All magnesy neodymowe on our website are in stock for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnets for fishing F400 GOLD

Where to purchase very strong magnet? Holders with magnets in solid and airtight steel enclosure are excellent for use in challenging weather conditions, including snow and rain read...

magnets with holders

Magnetic holders can be applied to enhance manufacturing, exploring underwater areas, or locating space rocks from gold check...

Enjoy delivery of your order if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 40x40x15 / N38 - lamellar magnet

lamellar magnet

Catalog no 020161

GTIN: 5906301811671

5

length [±0,1 mm]

40 mm

Width [±0,1 mm]

40 mm

Height [±0,1 mm]

15 mm

Weight

180 g

Magnetization Direction

↑ axial

Load capacity

47.38 kg / 464.64 N

Magnetic Induction

345.80 mT

Coating

[NiCuNi] nickel

55.37 with VAT / pcs + price for transport

45.02 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
45.02 ZŁ
55.37 ZŁ
price from 20 pcs
42.32 ZŁ
52.05 ZŁ
price from 60 pcs
39.62 ZŁ
48.73 ZŁ

Not sure what to buy?

Call us +48 888 99 98 98 or drop us a message using inquiry form the contact section.
Strength along with structure of a magnet can be reviewed with our modular calculator.

Order by 14:00 and we’ll ship today!

MPL 40x40x15 / N38 - lamellar magnet

Specification/characteristics MPL 40x40x15 / N38 - lamellar magnet
properties
values
Cat. no.
020161
GTIN
5906301811671
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
40 mm [±0,1 mm]
Width
40 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Weight
180 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
47.38 kg / 464.64 N
Magnetic Induction ~ ?
345.80 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets min. MPL 40x40x15 / N38 are magnets made from neodymium in a flat form. They are known for their extremely powerful magnetic properties, which are much stronger than ordinary iron magnets.
Thanks to their mighty power, flat magnets are regularly used in products that require very strong attraction.
Most common temperature resistance of flat magnets is 80°C, but with larger dimensions, this value can increase.
In addition, flat magnets usually have different coatings applied to their surfaces, such as nickel, gold, or chrome, to increase their durability.
The magnet named MPL 40x40x15 / N38 and a magnetic force 47.38 kg which weighs a mere 180 grams, making it the ideal choice for projects needing a flat magnet.
Neodymium flat magnets offer a range of advantages compared to other magnet shapes, which cause them being the best choice for many applications:
Contact surface: Thanks to their flat shape, flat magnets guarantee a greater contact surface with adjacent parts, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These are often applied in many devices, such as sensors, stepper motors, or speakers, where the flat shape is crucial for their operation.
Mounting: This form's flat shape makes it easier mounting, particularly when it is required to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows designers a lot of flexibility in placing them in devices, which can be more difficult with magnets of more complex shapes.
Stability: In some applications, the flat base of the flat magnet may offer better stability, reducing the risk of shifting or rotating. However, it's important to note that the optimal shape of the magnet depends on the given use and requirements. In some cases, other shapes, like cylindrical or spherical, are a better choice.
Attracted by magnets are ferromagnetic materials, such as iron elements, objects containing nickel, cobalt and special alloys of ferromagnetic metals. Moreover, magnets may lesser affect some other metals, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
Magnets work thanks to the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of these objects creates attractive forces, which affect materials containing cobalt or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which interact with each other when they are different. Poles of the same kind, e.g. two north poles, repel each other.
Thanks to this principle of operation, magnets are commonly used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them ideal for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its size and the materials used.
Not all materials react to magnets, and examples of such substances are plastics, glass, wooden materials and most gemstones. Additionally, magnets do not affect most metals, such as copper, aluminum, items made of gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless they are subjected to an extremely strong magnetic field.
It should be noted that high temperatures can weaken the magnet's effect. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards and even electronic devices sensitive to magnetic fields. For this reason, it is important to avoid placing magnets near such devices.
A neodymium plate magnet in classes N50 and N52 is a powerful and strong magnetic piece shaped like a plate, that offers high force and versatile application. Competitive price, fast shipping, resistance and universal usability.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their consistent holding force, neodymium magnets have these key benefits:

  • They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (in laboratory conditions),
  • They are extremely resistant to demagnetization caused by external magnetic sources,
  • The use of a polished silver surface provides a eye-catching finish,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • With the option for customized forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
  • Wide application in advanced technical fields – they are used in HDDs, electric motors, diagnostic apparatus as well as other advanced devices,
  • Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and reinforces its overall resistance,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can oxidize. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
  • Safety concern linked to microscopic shards may arise, if ingested accidentally, which is notable in the health of young users. It should also be noted that small elements from these magnets may interfere with diagnostics when ingested,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Detachment force of the magnet in optimal conditionswhat contributes to it?

The given holding capacity of the magnet means the highest holding force, calculated in the best circumstances, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • under perpendicular detachment force
  • at room temperature

Magnet lifting force in use – key factors

The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured by applying a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under parallel forces the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet and the plate lowers the lifting capacity.

Be Cautious with Neodymium Magnets

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Magnets made of neodymium are characterized by being fragile, which can cause them to become damaged.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Neodymium magnets bounce and touch each other mutually within a radius of several to around 10 cm from each other.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Exercise caution!

So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98