MPL 40x40x15 / N38 - lamellar magnet
lamellar magnet
Catalog no 020161
GTIN/EAN: 5906301811671
length
40 mm [±0,1 mm]
Width
40 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Weight
180 g
Magnetization Direction
↑ axial
Load capacity
46.94 kg / 460.51 N
Magnetic Induction
345.80 mT / 3458 Gs
Coating
[NiCuNi] Nickel
55.37 ZŁ with VAT / pcs + price for transport
45.02 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 22 499 98 98
otherwise drop us a message by means of
inquiry form
the contact section.
Parameters and structure of a magnet can be checked with our
magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
Technical parameters - MPL 40x40x15 / N38 - lamellar magnet
Specification / characteristics - MPL 40x40x15 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020161 |
| GTIN/EAN | 5906301811671 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 40 mm [±0,1 mm] |
| Width | 40 mm [±0,1 mm] |
| Height | 15 mm [±0,1 mm] |
| Weight | 180 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 46.94 kg / 460.51 N |
| Magnetic Induction ~ ? | 345.80 mT / 3458 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering modeling of the product - data
These information constitute the outcome of a physical analysis. Results were calculated on models for the class Nd2Fe14B. Actual conditions might slightly differ from theoretical values. Please consider these data as a preliminary roadmap when designing systems.
Table 1: Static pull force (force vs gap) - characteristics
MPL 40x40x15 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3458 Gs
345.8 mT
|
46.94 kg / 103.48 lbs
46940.0 g / 460.5 N
|
dangerous! |
| 1 mm |
3333 Gs
333.3 mT
|
43.62 kg / 96.16 lbs
43616.1 g / 427.9 N
|
dangerous! |
| 2 mm |
3199 Gs
319.9 mT
|
40.19 kg / 88.60 lbs
40189.1 g / 394.3 N
|
dangerous! |
| 3 mm |
3060 Gs
306.0 mT
|
36.77 kg / 81.06 lbs
36767.3 g / 360.7 N
|
dangerous! |
| 5 mm |
2773 Gs
277.3 mT
|
30.19 kg / 66.55 lbs
30187.9 g / 296.1 N
|
dangerous! |
| 10 mm |
2078 Gs
207.8 mT
|
16.95 kg / 37.37 lbs
16950.2 g / 166.3 N
|
dangerous! |
| 15 mm |
1507 Gs
150.7 mT
|
8.91 kg / 19.65 lbs
8913.7 g / 87.4 N
|
strong |
| 20 mm |
1085 Gs
108.5 mT
|
4.62 kg / 10.19 lbs
4622.3 g / 45.3 N
|
strong |
| 30 mm |
580 Gs
58.0 mT
|
1.32 kg / 2.92 lbs
1322.9 g / 13.0 N
|
low risk |
| 50 mm |
204 Gs
20.4 mT
|
0.16 kg / 0.36 lbs
164.0 g / 1.6 N
|
low risk |
Table 2: Vertical load (vertical surface)
MPL 40x40x15 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
9.39 kg / 20.70 lbs
9388.0 g / 92.1 N
|
| 1 mm | Stal (~0.2) |
8.72 kg / 19.23 lbs
8724.0 g / 85.6 N
|
| 2 mm | Stal (~0.2) |
8.04 kg / 17.72 lbs
8038.0 g / 78.9 N
|
| 3 mm | Stal (~0.2) |
7.35 kg / 16.21 lbs
7354.0 g / 72.1 N
|
| 5 mm | Stal (~0.2) |
6.04 kg / 13.31 lbs
6038.0 g / 59.2 N
|
| 10 mm | Stal (~0.2) |
3.39 kg / 7.47 lbs
3390.0 g / 33.3 N
|
| 15 mm | Stal (~0.2) |
1.78 kg / 3.93 lbs
1782.0 g / 17.5 N
|
| 20 mm | Stal (~0.2) |
0.92 kg / 2.04 lbs
924.0 g / 9.1 N
|
| 30 mm | Stal (~0.2) |
0.26 kg / 0.58 lbs
264.0 g / 2.6 N
|
| 50 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MPL 40x40x15 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
14.08 kg / 31.05 lbs
14082.0 g / 138.1 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
9.39 kg / 20.70 lbs
9388.0 g / 92.1 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
4.69 kg / 10.35 lbs
4694.0 g / 46.0 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
23.47 kg / 51.74 lbs
23470.0 g / 230.2 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MPL 40x40x15 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.35 kg / 5.17 lbs
2347.0 g / 23.0 N
|
| 1 mm |
|
5.87 kg / 12.94 lbs
5867.5 g / 57.6 N
|
| 2 mm |
|
11.74 kg / 25.87 lbs
11735.0 g / 115.1 N
|
| 3 mm |
|
17.60 kg / 38.81 lbs
17602.5 g / 172.7 N
|
| 5 mm |
|
29.34 kg / 64.68 lbs
29337.5 g / 287.8 N
|
| 10 mm |
|
46.94 kg / 103.48 lbs
46940.0 g / 460.5 N
|
| 11 mm |
|
46.94 kg / 103.48 lbs
46940.0 g / 460.5 N
|
| 12 mm |
|
46.94 kg / 103.48 lbs
46940.0 g / 460.5 N
|
Table 5: Thermal resistance (stability) - thermal limit
MPL 40x40x15 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
46.94 kg / 103.48 lbs
46940.0 g / 460.5 N
|
OK |
| 40 °C | -2.2% |
45.91 kg / 101.21 lbs
45907.3 g / 450.4 N
|
OK |
| 60 °C | -4.4% |
44.87 kg / 98.93 lbs
44874.6 g / 440.2 N
|
|
| 80 °C | -6.6% |
43.84 kg / 96.65 lbs
43842.0 g / 430.1 N
|
|
| 100 °C | -28.8% |
33.42 kg / 73.68 lbs
33421.3 g / 327.9 N
|
Table 6: Two magnets (attraction) - field collision
MPL 40x40x15 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
117.92 kg / 259.97 lbs
4 963 Gs
|
17.69 kg / 39.00 lbs
17688 g / 173.5 N
|
N/A |
| 1 mm |
113.82 kg / 250.94 lbs
6 794 Gs
|
17.07 kg / 37.64 lbs
17074 g / 167.5 N
|
102.44 kg / 225.84 lbs
~0 Gs
|
| 2 mm |
109.57 kg / 241.57 lbs
6 666 Gs
|
16.44 kg / 36.23 lbs
16436 g / 161.2 N
|
98.62 kg / 217.41 lbs
~0 Gs
|
| 3 mm |
105.28 kg / 232.10 lbs
6 534 Gs
|
15.79 kg / 34.81 lbs
15792 g / 154.9 N
|
94.75 kg / 208.89 lbs
~0 Gs
|
| 5 mm |
96.65 kg / 213.08 lbs
6 261 Gs
|
14.50 kg / 31.96 lbs
14498 g / 142.2 N
|
86.99 kg / 191.77 lbs
~0 Gs
|
| 10 mm |
75.84 kg / 167.19 lbs
5 546 Gs
|
11.38 kg / 25.08 lbs
11376 g / 111.6 N
|
68.25 kg / 150.47 lbs
~0 Gs
|
| 20 mm |
42.58 kg / 93.88 lbs
4 155 Gs
|
6.39 kg / 14.08 lbs
6387 g / 62.7 N
|
38.32 kg / 84.49 lbs
~0 Gs
|
| 50 mm |
6.12 kg / 13.49 lbs
1 575 Gs
|
0.92 kg / 2.02 lbs
918 g / 9.0 N
|
5.51 kg / 12.14 lbs
~0 Gs
|
| 60 mm |
3.32 kg / 7.33 lbs
1 161 Gs
|
0.50 kg / 1.10 lbs
499 g / 4.9 N
|
2.99 kg / 6.59 lbs
~0 Gs
|
| 70 mm |
1.87 kg / 4.12 lbs
871 Gs
|
0.28 kg / 0.62 lbs
281 g / 2.8 N
|
1.68 kg / 3.71 lbs
~0 Gs
|
| 80 mm |
1.09 kg / 2.41 lbs
665 Gs
|
0.16 kg / 0.36 lbs
164 g / 1.6 N
|
0.98 kg / 2.17 lbs
~0 Gs
|
| 90 mm |
0.66 kg / 1.46 lbs
517 Gs
|
0.10 kg / 0.22 lbs
99 g / 1.0 N
|
0.59 kg / 1.31 lbs
~0 Gs
|
| 100 mm |
0.41 kg / 0.91 lbs
409 Gs
|
0.06 kg / 0.14 lbs
62 g / 0.6 N
|
0.37 kg / 0.82 lbs
~0 Gs
|
Table 7: Protective zones (electronics) - precautionary measures
MPL 40x40x15 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 20.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 16.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 12.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 10.0 cm |
| Remote | 50 Gs (5.0 mT) | 9.0 cm |
| Payment card | 400 Gs (40.0 mT) | 4.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 3.0 cm |
Table 8: Dynamics (cracking risk) - warning
MPL 40x40x15 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
19.62 km/h
(5.45 m/s)
|
2.67 J | |
| 30 mm |
28.70 km/h
(7.97 m/s)
|
5.72 J | |
| 50 mm |
36.50 km/h
(10.14 m/s)
|
9.25 J | |
| 100 mm |
51.50 km/h
(14.31 m/s)
|
18.42 J |
Table 9: Surface protection spec
MPL 40x40x15 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MPL 40x40x15 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 58 107 Mx | 581.1 µWb |
| Pc Coefficient | 0.43 | Low (Flat) |
Table 11: Submerged application
MPL 40x40x15 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 46.94 kg | Standard |
| Water (riverbed) |
53.75 kg
(+6.81 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Warning: On a vertical wall, the magnet retains merely a fraction of its nominal pull.
2. Steel thickness impact
*Thin metal sheet (e.g. computer case) drastically limits the holding force.
3. Power loss vs temp
*For N38 material, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.43
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out more products
Advantages as well as disadvantages of Nd2Fe14B magnets.
Strengths
- Their strength is maintained, and after approximately 10 years it drops only by ~1% (theoretically),
- They do not lose their magnetic properties even under external field action,
- In other words, due to the metallic layer of gold, the element looks attractive,
- The surface of neodymium magnets generates a unique magnetic field – this is a key feature,
- Due to their durability and thermal resistance, neodymium magnets can operate (depending on the form) even at high temperatures reaching 230°C or more...
- Possibility of individual machining as well as adjusting to precise conditions,
- Versatile presence in advanced technology sectors – they are used in data components, drive modules, advanced medical instruments, also modern systems.
- Thanks to efficiency per cm³, small magnets offer high operating force, occupying minimum space,
Disadvantages
- At strong impacts they can crack, therefore we advise placing them in strong housings. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- Neodymium magnets lose their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
- Magnets exposed to a humid environment can corrode. Therefore during using outdoors, we recommend using waterproof magnets made of rubber, plastic or other material resistant to moisture
- Due to limitations in producing nuts and complicated forms in magnets, we recommend using cover - magnetic mount.
- Potential hazard to health – tiny shards of magnets pose a threat, when accidentally swallowed, which gains importance in the context of child safety. It is also worth noting that small elements of these products can complicate diagnosis medical after entering the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Pull force analysis
Maximum holding power of the magnet – what it depends on?
- with the application of a sheet made of low-carbon steel, guaranteeing full magnetic saturation
- possessing a massiveness of min. 10 mm to avoid saturation
- with a plane cleaned and smooth
- with total lack of distance (no impurities)
- during detachment in a direction vertical to the mounting surface
- in neutral thermal conditions
Magnet lifting force in use – key factors
- Air gap (between the magnet and the plate), because even a tiny clearance (e.g. 0.5 mm) leads to a drastic drop in lifting capacity by up to 50% (this also applies to varnish, rust or dirt).
- Direction of force – highest force is reached only during perpendicular pulling. The resistance to sliding of the magnet along the surface is usually many times smaller (approx. 1/5 of the lifting capacity).
- Substrate thickness – for full efficiency, the steel must be sufficiently thick. Paper-thin metal restricts the attraction force (the magnet "punches through" it).
- Plate material – mild steel attracts best. Alloy admixtures decrease magnetic properties and lifting capacity.
- Smoothness – ideal contact is obtained only on polished steel. Rough texture create air cushions, reducing force.
- Thermal factor – hot environment weakens magnetic field. Too high temperature can permanently damage the magnet.
Holding force was measured on the plate surface of 20 mm thickness, when a perpendicular force was applied, however under parallel forces the lifting capacity is smaller. In addition, even a slight gap between the magnet and the plate reduces the load capacity.
Safe handling of neodymium magnets
Mechanical processing
Powder generated during grinding of magnets is self-igniting. Avoid drilling into magnets unless you are an expert.
Immense force
Handle with care. Neodymium magnets act from a long distance and snap with massive power, often faster than you can move away.
Impact on smartphones
A strong magnetic field negatively affects the operation of magnetometers in smartphones and GPS navigation. Do not bring magnets close to a device to prevent breaking the sensors.
Beware of splinters
Neodymium magnets are sintered ceramics, meaning they are fragile like glass. Impact of two magnets will cause them shattering into small pieces.
Life threat
Warning for patients: Strong magnetic fields affect electronics. Keep at least 30 cm distance or request help to work with the magnets.
Safe distance
Powerful magnetic fields can destroy records on payment cards, HDDs, and storage devices. Stay away of min. 10 cm.
Allergy Warning
Medical facts indicate that the nickel plating (standard magnet coating) is a potent allergen. If your skin reacts to metals, prevent touching magnets with bare hands or select encased magnets.
Heat warning
Regular neodymium magnets (N-type) lose power when the temperature exceeds 80°C. The loss of strength is permanent.
Crushing risk
Risk of injury: The attraction force is so immense that it can cause blood blisters, crushing, and even bone fractures. Use thick gloves.
Do not give to children
Absolutely store magnets away from children. Choking hazard is high, and the consequences of magnets clamping inside the body are fatal.
