MPL 50x50x25 / N38 - lamellar magnet
lamellar magnet
Catalog no 020168
GTIN/EAN: 5906301811749
length
50 mm [±0,1 mm]
Width
50 mm [±0,1 mm]
Height
25 mm [±0,1 mm]
Weight
468.75 g
Magnetization Direction
↑ axial
Load capacity
90.53 kg / 888.15 N
Magnetic Induction
413.25 mT / 4133 Gs
Coating
[NiCuNi] Nickel
159.90 ZŁ with VAT / pcs + price for transport
130.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
if you prefer send us a note using
our online form
our website.
Parameters and structure of a neodymium magnet can be checked with our
our magnetic calculator.
Same-day shipping for orders placed before 14:00.
Technical specification - MPL 50x50x25 / N38 - lamellar magnet
Specification / characteristics - MPL 50x50x25 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020168 |
| GTIN/EAN | 5906301811749 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 50 mm [±0,1 mm] |
| Width | 50 mm [±0,1 mm] |
| Height | 25 mm [±0,1 mm] |
| Weight | 468.75 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 90.53 kg / 888.15 N |
| Magnetic Induction ~ ? | 413.25 mT / 4133 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the magnet - report
Presented values are the outcome of a engineering calculation. Values are based on models for the material Nd2Fe14B. Actual parameters may differ. Treat these calculations as a preliminary roadmap when designing systems.
Table 1: Static force (force vs distance) - power drop
MPL 50x50x25 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
4132 Gs
413.2 mT
|
90.53 kg / 199.58 lbs
90530.0 g / 888.1 N
|
critical level |
| 1 mm |
3999 Gs
399.9 mT
|
84.79 kg / 186.94 lbs
84794.0 g / 831.8 N
|
critical level |
| 2 mm |
3861 Gs
386.1 mT
|
79.04 kg / 174.25 lbs
79038.6 g / 775.4 N
|
critical level |
| 3 mm |
3720 Gs
372.0 mT
|
73.38 kg / 161.78 lbs
73381.8 g / 719.9 N
|
critical level |
| 5 mm |
3435 Gs
343.5 mT
|
62.56 kg / 137.93 lbs
62564.2 g / 613.8 N
|
critical level |
| 10 mm |
2742 Gs
274.2 mT
|
39.87 kg / 87.90 lbs
39868.7 g / 391.1 N
|
critical level |
| 15 mm |
2137 Gs
213.7 mT
|
24.21 kg / 53.37 lbs
24210.4 g / 237.5 N
|
critical level |
| 20 mm |
1649 Gs
164.9 mT
|
14.41 kg / 31.77 lbs
14409.9 g / 141.4 N
|
critical level |
| 30 mm |
988 Gs
98.8 mT
|
5.17 kg / 11.40 lbs
5170.9 g / 50.7 N
|
warning |
| 50 mm |
399 Gs
39.9 mT
|
0.85 kg / 1.86 lbs
845.8 g / 8.3 N
|
weak grip |
Table 2: Vertical hold (wall)
MPL 50x50x25 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
18.11 kg / 39.92 lbs
18106.0 g / 177.6 N
|
| 1 mm | Stal (~0.2) |
16.96 kg / 37.39 lbs
16958.0 g / 166.4 N
|
| 2 mm | Stal (~0.2) |
15.81 kg / 34.85 lbs
15808.0 g / 155.1 N
|
| 3 mm | Stal (~0.2) |
14.68 kg / 32.36 lbs
14676.0 g / 144.0 N
|
| 5 mm | Stal (~0.2) |
12.51 kg / 27.58 lbs
12512.0 g / 122.7 N
|
| 10 mm | Stal (~0.2) |
7.97 kg / 17.58 lbs
7974.0 g / 78.2 N
|
| 15 mm | Stal (~0.2) |
4.84 kg / 10.67 lbs
4842.0 g / 47.5 N
|
| 20 mm | Stal (~0.2) |
2.88 kg / 6.35 lbs
2882.0 g / 28.3 N
|
| 30 mm | Stal (~0.2) |
1.03 kg / 2.28 lbs
1034.0 g / 10.1 N
|
| 50 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MPL 50x50x25 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
27.16 kg / 59.88 lbs
27159.0 g / 266.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
18.11 kg / 39.92 lbs
18106.0 g / 177.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
9.05 kg / 19.96 lbs
9053.0 g / 88.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
45.27 kg / 99.79 lbs
45265.0 g / 444.0 N
|
Table 4: Steel thickness (substrate influence) - sheet metal selection
MPL 50x50x25 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
3.02 kg / 6.65 lbs
3017.7 g / 29.6 N
|
| 1 mm |
|
7.54 kg / 16.63 lbs
7544.2 g / 74.0 N
|
| 2 mm |
|
15.09 kg / 33.26 lbs
15088.3 g / 148.0 N
|
| 3 mm |
|
22.63 kg / 49.90 lbs
22632.5 g / 222.0 N
|
| 5 mm |
|
37.72 kg / 83.16 lbs
37720.8 g / 370.0 N
|
| 10 mm |
|
75.44 kg / 166.32 lbs
75441.7 g / 740.1 N
|
| 11 mm |
|
82.99 kg / 182.95 lbs
82985.8 g / 814.1 N
|
| 12 mm |
|
90.53 kg / 199.58 lbs
90530.0 g / 888.1 N
|
Table 5: Thermal resistance (material behavior) - resistance threshold
MPL 50x50x25 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
90.53 kg / 199.58 lbs
90530.0 g / 888.1 N
|
OK |
| 40 °C | -2.2% |
88.54 kg / 195.19 lbs
88538.3 g / 868.6 N
|
OK |
| 60 °C | -4.4% |
86.55 kg / 190.80 lbs
86546.7 g / 849.0 N
|
|
| 80 °C | -6.6% |
84.56 kg / 186.41 lbs
84555.0 g / 829.5 N
|
|
| 100 °C | -28.8% |
64.46 kg / 142.10 lbs
64457.4 g / 632.3 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field range
MPL 50x50x25 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
263.15 kg / 580.14 lbs
5 403 Gs
|
39.47 kg / 87.02 lbs
39472 g / 387.2 N
|
N/A |
| 1 mm |
254.89 kg / 561.94 lbs
8 133 Gs
|
38.23 kg / 84.29 lbs
38234 g / 375.1 N
|
229.40 kg / 505.75 lbs
~0 Gs
|
| 2 mm |
246.47 kg / 543.38 lbs
7 998 Gs
|
36.97 kg / 81.51 lbs
36971 g / 362.7 N
|
221.83 kg / 489.04 lbs
~0 Gs
|
| 3 mm |
238.08 kg / 524.88 lbs
7 861 Gs
|
35.71 kg / 78.73 lbs
35713 g / 350.3 N
|
214.28 kg / 472.40 lbs
~0 Gs
|
| 5 mm |
221.48 kg / 488.27 lbs
7 582 Gs
|
33.22 kg / 73.24 lbs
33222 g / 325.9 N
|
199.33 kg / 439.45 lbs
~0 Gs
|
| 10 mm |
181.86 kg / 400.93 lbs
6 870 Gs
|
27.28 kg / 60.14 lbs
27279 g / 267.6 N
|
163.67 kg / 360.83 lbs
~0 Gs
|
| 20 mm |
115.89 kg / 255.49 lbs
5 484 Gs
|
17.38 kg / 38.32 lbs
17383 g / 170.5 N
|
104.30 kg / 229.94 lbs
~0 Gs
|
| 50 mm |
24.93 kg / 54.97 lbs
2 544 Gs
|
3.74 kg / 8.25 lbs
3740 g / 36.7 N
|
22.44 kg / 49.47 lbs
~0 Gs
|
| 60 mm |
15.03 kg / 33.14 lbs
1 975 Gs
|
2.25 kg / 4.97 lbs
2255 g / 22.1 N
|
13.53 kg / 29.82 lbs
~0 Gs
|
| 70 mm |
9.24 kg / 20.37 lbs
1 548 Gs
|
1.39 kg / 3.05 lbs
1386 g / 13.6 N
|
8.31 kg / 18.33 lbs
~0 Gs
|
| 80 mm |
5.81 kg / 12.80 lbs
1 228 Gs
|
0.87 kg / 1.92 lbs
871 g / 8.5 N
|
5.23 kg / 11.52 lbs
~0 Gs
|
| 90 mm |
3.74 kg / 8.24 lbs
985 Gs
|
0.56 kg / 1.24 lbs
560 g / 5.5 N
|
3.36 kg / 7.41 lbs
~0 Gs
|
| 100 mm |
2.46 kg / 5.42 lbs
799 Gs
|
0.37 kg / 0.81 lbs
369 g / 3.6 N
|
2.21 kg / 4.88 lbs
~0 Gs
|
Table 7: Hazards (implants) - warnings
MPL 50x50x25 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 28.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 22.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 17.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 13.5 cm |
| Remote | 50 Gs (5.0 mT) | 12.5 cm |
| Payment card | 400 Gs (40.0 mT) | 5.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 4.5 cm |
Table 8: Impact energy (cracking risk) - collision effects
MPL 50x50x25 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
17.45 km/h
(4.85 m/s)
|
5.51 J | |
| 30 mm |
25.13 km/h
(6.98 m/s)
|
11.42 J | |
| 50 mm |
31.52 km/h
(8.76 m/s)
|
17.97 J | |
| 100 mm |
44.33 km/h
(12.31 m/s)
|
35.54 J |
Table 9: Coating parameters (durability)
MPL 50x50x25 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MPL 50x50x25 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 105 093 Mx | 1050.9 µWb |
| Pc Coefficient | 0.54 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MPL 50x50x25 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 90.53 kg | Standard |
| Water (riverbed) |
103.66 kg
(+13.13 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Warning: On a vertical surface, the magnet retains just approx. 20-30% of its nominal pull.
2. Efficiency vs thickness
*Thin metal sheet (e.g. computer case) significantly limits the holding force.
3. Thermal stability
*For N38 grade, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.54
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Advantages as well as disadvantages of Nd2Fe14B magnets.
Pros
- Their strength remains stable, and after around 10 years it drops only by ~1% (according to research),
- They show high resistance to demagnetization induced by external disturbances,
- A magnet with a shiny gold surface is more attractive,
- They are known for high magnetic induction at the operating surface, which increases their power,
- Through (adequate) combination of ingredients, they can achieve high thermal strength, allowing for operation at temperatures approaching 230°C and above...
- Thanks to the potential of accurate forming and customization to unique projects, neodymium magnets can be manufactured in a wide range of geometric configurations, which makes them more universal,
- Significant place in innovative solutions – they are used in mass storage devices, electric drive systems, medical devices, as well as other advanced devices.
- Thanks to concentrated force, small magnets offer high operating force, occupying minimum space,
Limitations
- At very strong impacts they can crack, therefore we recommend placing them in special holders. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- Neodymium magnets lose their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic or other material immune to moisture, in case of application outdoors
- Due to limitations in creating nuts and complex shapes in magnets, we propose using a housing - magnetic holder.
- Potential hazard to health – tiny shards of magnets pose a threat, when accidentally swallowed, which gains importance in the context of child safety. It is also worth noting that small components of these magnets can be problematic in diagnostics medical after entering the body.
- With budget limitations the cost of neodymium magnets is a challenge,
Lifting parameters
Optimal lifting capacity of a neodymium magnet – what it depends on?
- using a sheet made of mild steel, acting as a ideal flux conductor
- with a cross-section minimum 10 mm
- characterized by smoothness
- without any clearance between the magnet and steel
- during pulling in a direction vertical to the mounting surface
- at ambient temperature room level
Lifting capacity in real conditions – factors
- Gap (betwixt the magnet and the plate), as even a very small clearance (e.g. 0.5 mm) leads to a drastic drop in lifting capacity by up to 50% (this also applies to paint, rust or dirt).
- Angle of force application – maximum parameter is available only during pulling at a 90° angle. The shear force of the magnet along the plate is typically many times smaller (approx. 1/5 of the lifting capacity).
- Metal thickness – thin material does not allow full use of the magnet. Magnetic flux penetrates through instead of converting into lifting capacity.
- Chemical composition of the base – mild steel gives the best results. Alloy admixtures decrease magnetic properties and holding force.
- Surface quality – the smoother and more polished the surface, the better the adhesion and stronger the hold. Unevenness acts like micro-gaps.
- Thermal environment – heating the magnet results in weakening of force. Check the thermal limit for a given model.
Lifting capacity testing was performed on a smooth plate of suitable thickness, under perpendicular forces, in contrast under attempts to slide the magnet the holding force is lower. Moreover, even a slight gap between the magnet and the plate reduces the load capacity.
Warnings
Nickel coating and allergies
A percentage of the population experience a sensitization to Ni, which is the standard coating for neodymium magnets. Extended handling can result in skin redness. It is best to use safety gloves.
GPS Danger
An intense magnetic field interferes with the operation of magnetometers in smartphones and GPS navigation. Do not bring magnets close to a smartphone to avoid damaging the sensors.
Fire warning
Fire hazard: Rare earth powder is highly flammable. Do not process magnets without safety gear as this risks ignition.
Protect data
Intense magnetic fields can corrupt files on credit cards, hard drives, and other magnetic media. Stay away of min. 10 cm.
Thermal limits
Monitor thermal conditions. Exposing the magnet to high heat will ruin its properties and pulling force.
Powerful field
Handle with care. Neodymium magnets attract from a distance and snap with huge force, often faster than you can move away.
Do not give to children
Always keep magnets out of reach of children. Choking hazard is significant, and the consequences of magnets clamping inside the body are tragic.
Medical implants
Individuals with a heart stimulator should keep an large gap from magnets. The magnetic field can stop the functioning of the life-saving device.
Bone fractures
Large magnets can crush fingers instantly. Under no circumstances place your hand betwixt two attracting surfaces.
Protective goggles
Despite the nickel coating, the material is delicate and not impact-resistant. Do not hit, as the magnet may crumble into sharp, dangerous pieces.
