MPL 50x50x25 / N38 - lamellar magnet
lamellar magnet
Catalog no 020168
GTIN/EAN: 5906301811749
length
50 mm [±0,1 mm]
Width
50 mm [±0,1 mm]
Height
25 mm [±0,1 mm]
Weight
468.75 g
Magnetization Direction
↑ axial
Load capacity
90.53 kg / 888.15 N
Magnetic Induction
413.25 mT / 4133 Gs
Coating
[NiCuNi] Nickel
159.90 ZŁ with VAT / pcs + price for transport
130.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
otherwise send us a note using
request form
through our site.
Strength and shape of magnets can be analyzed on our
modular calculator.
Order by 14:00 and we’ll ship today!
Technical of the product - MPL 50x50x25 / N38 - lamellar magnet
Specification / characteristics - MPL 50x50x25 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020168 |
| GTIN/EAN | 5906301811749 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 50 mm [±0,1 mm] |
| Width | 50 mm [±0,1 mm] |
| Height | 25 mm [±0,1 mm] |
| Weight | 468.75 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 90.53 kg / 888.15 N |
| Magnetic Induction ~ ? | 413.25 mT / 4133 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical simulation of the product - technical parameters
The following data constitute the outcome of a physical calculation. Values are based on models for the class Nd2Fe14B. Real-world parameters may differ. Treat these calculations as a supplementary guide when designing systems.
Table 1: Static force (pull vs gap) - characteristics
MPL 50x50x25 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
4132 Gs
413.2 mT
|
90.53 kg / 199.58 lbs
90530.0 g / 888.1 N
|
dangerous! |
| 1 mm |
3999 Gs
399.9 mT
|
84.79 kg / 186.94 lbs
84794.0 g / 831.8 N
|
dangerous! |
| 2 mm |
3861 Gs
386.1 mT
|
79.04 kg / 174.25 lbs
79038.6 g / 775.4 N
|
dangerous! |
| 3 mm |
3720 Gs
372.0 mT
|
73.38 kg / 161.78 lbs
73381.8 g / 719.9 N
|
dangerous! |
| 5 mm |
3435 Gs
343.5 mT
|
62.56 kg / 137.93 lbs
62564.2 g / 613.8 N
|
dangerous! |
| 10 mm |
2742 Gs
274.2 mT
|
39.87 kg / 87.90 lbs
39868.7 g / 391.1 N
|
dangerous! |
| 15 mm |
2137 Gs
213.7 mT
|
24.21 kg / 53.37 lbs
24210.4 g / 237.5 N
|
dangerous! |
| 20 mm |
1649 Gs
164.9 mT
|
14.41 kg / 31.77 lbs
14409.9 g / 141.4 N
|
dangerous! |
| 30 mm |
988 Gs
98.8 mT
|
5.17 kg / 11.40 lbs
5170.9 g / 50.7 N
|
strong |
| 50 mm |
399 Gs
39.9 mT
|
0.85 kg / 1.86 lbs
845.8 g / 8.3 N
|
safe |
Table 2: Vertical force (vertical surface)
MPL 50x50x25 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
18.11 kg / 39.92 lbs
18106.0 g / 177.6 N
|
| 1 mm | Stal (~0.2) |
16.96 kg / 37.39 lbs
16958.0 g / 166.4 N
|
| 2 mm | Stal (~0.2) |
15.81 kg / 34.85 lbs
15808.0 g / 155.1 N
|
| 3 mm | Stal (~0.2) |
14.68 kg / 32.36 lbs
14676.0 g / 144.0 N
|
| 5 mm | Stal (~0.2) |
12.51 kg / 27.58 lbs
12512.0 g / 122.7 N
|
| 10 mm | Stal (~0.2) |
7.97 kg / 17.58 lbs
7974.0 g / 78.2 N
|
| 15 mm | Stal (~0.2) |
4.84 kg / 10.67 lbs
4842.0 g / 47.5 N
|
| 20 mm | Stal (~0.2) |
2.88 kg / 6.35 lbs
2882.0 g / 28.3 N
|
| 30 mm | Stal (~0.2) |
1.03 kg / 2.28 lbs
1034.0 g / 10.1 N
|
| 50 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MPL 50x50x25 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
27.16 kg / 59.88 lbs
27159.0 g / 266.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
18.11 kg / 39.92 lbs
18106.0 g / 177.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
9.05 kg / 19.96 lbs
9053.0 g / 88.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
45.27 kg / 99.79 lbs
45265.0 g / 444.0 N
|
Table 4: Material efficiency (substrate influence) - power losses
MPL 50x50x25 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
3.02 kg / 6.65 lbs
3017.7 g / 29.6 N
|
| 1 mm |
|
7.54 kg / 16.63 lbs
7544.2 g / 74.0 N
|
| 2 mm |
|
15.09 kg / 33.26 lbs
15088.3 g / 148.0 N
|
| 3 mm |
|
22.63 kg / 49.90 lbs
22632.5 g / 222.0 N
|
| 5 mm |
|
37.72 kg / 83.16 lbs
37720.8 g / 370.0 N
|
| 10 mm |
|
75.44 kg / 166.32 lbs
75441.7 g / 740.1 N
|
| 11 mm |
|
82.99 kg / 182.95 lbs
82985.8 g / 814.1 N
|
| 12 mm |
|
90.53 kg / 199.58 lbs
90530.0 g / 888.1 N
|
Table 5: Thermal resistance (stability) - power drop
MPL 50x50x25 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
90.53 kg / 199.58 lbs
90530.0 g / 888.1 N
|
OK |
| 40 °C | -2.2% |
88.54 kg / 195.19 lbs
88538.3 g / 868.6 N
|
OK |
| 60 °C | -4.4% |
86.55 kg / 190.80 lbs
86546.7 g / 849.0 N
|
|
| 80 °C | -6.6% |
84.56 kg / 186.41 lbs
84555.0 g / 829.5 N
|
|
| 100 °C | -28.8% |
64.46 kg / 142.10 lbs
64457.4 g / 632.3 N
|
Table 6: Two magnets (repulsion) - forces in the system
MPL 50x50x25 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
263.15 kg / 580.14 lbs
5 403 Gs
|
39.47 kg / 87.02 lbs
39472 g / 387.2 N
|
N/A |
| 1 mm |
254.89 kg / 561.94 lbs
8 133 Gs
|
38.23 kg / 84.29 lbs
38234 g / 375.1 N
|
229.40 kg / 505.75 lbs
~0 Gs
|
| 2 mm |
246.47 kg / 543.38 lbs
7 998 Gs
|
36.97 kg / 81.51 lbs
36971 g / 362.7 N
|
221.83 kg / 489.04 lbs
~0 Gs
|
| 3 mm |
238.08 kg / 524.88 lbs
7 861 Gs
|
35.71 kg / 78.73 lbs
35713 g / 350.3 N
|
214.28 kg / 472.40 lbs
~0 Gs
|
| 5 mm |
221.48 kg / 488.27 lbs
7 582 Gs
|
33.22 kg / 73.24 lbs
33222 g / 325.9 N
|
199.33 kg / 439.45 lbs
~0 Gs
|
| 10 mm |
181.86 kg / 400.93 lbs
6 870 Gs
|
27.28 kg / 60.14 lbs
27279 g / 267.6 N
|
163.67 kg / 360.83 lbs
~0 Gs
|
| 20 mm |
115.89 kg / 255.49 lbs
5 484 Gs
|
17.38 kg / 38.32 lbs
17383 g / 170.5 N
|
104.30 kg / 229.94 lbs
~0 Gs
|
| 50 mm |
24.93 kg / 54.97 lbs
2 544 Gs
|
3.74 kg / 8.25 lbs
3740 g / 36.7 N
|
22.44 kg / 49.47 lbs
~0 Gs
|
| 60 mm |
15.03 kg / 33.14 lbs
1 975 Gs
|
2.25 kg / 4.97 lbs
2255 g / 22.1 N
|
13.53 kg / 29.82 lbs
~0 Gs
|
| 70 mm |
9.24 kg / 20.37 lbs
1 548 Gs
|
1.39 kg / 3.05 lbs
1386 g / 13.6 N
|
8.31 kg / 18.33 lbs
~0 Gs
|
| 80 mm |
5.81 kg / 12.80 lbs
1 228 Gs
|
0.87 kg / 1.92 lbs
871 g / 8.5 N
|
5.23 kg / 11.52 lbs
~0 Gs
|
| 90 mm |
3.74 kg / 8.24 lbs
985 Gs
|
0.56 kg / 1.24 lbs
560 g / 5.5 N
|
3.36 kg / 7.41 lbs
~0 Gs
|
| 100 mm |
2.46 kg / 5.42 lbs
799 Gs
|
0.37 kg / 0.81 lbs
369 g / 3.6 N
|
2.21 kg / 4.88 lbs
~0 Gs
|
Table 7: Protective zones (electronics) - precautionary measures
MPL 50x50x25 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 28.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 22.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 17.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 13.5 cm |
| Car key | 50 Gs (5.0 mT) | 12.5 cm |
| Payment card | 400 Gs (40.0 mT) | 5.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 4.5 cm |
Table 8: Impact energy (kinetic energy) - warning
MPL 50x50x25 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
17.45 km/h
(4.85 m/s)
|
5.51 J | |
| 30 mm |
25.13 km/h
(6.98 m/s)
|
11.42 J | |
| 50 mm |
31.52 km/h
(8.76 m/s)
|
17.97 J | |
| 100 mm |
44.33 km/h
(12.31 m/s)
|
35.54 J |
Table 9: Surface protection spec
MPL 50x50x25 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 50x50x25 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 105 093 Mx | 1050.9 µWb |
| Pc Coefficient | 0.54 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MPL 50x50x25 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 90.53 kg | Standard |
| Water (riverbed) |
103.66 kg
(+13.13 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Warning: On a vertical surface, the magnet holds only approx. 20-30% of its nominal pull.
2. Efficiency vs thickness
*Thin steel (e.g. computer case) significantly weakens the holding force.
3. Heat tolerance
*For N38 material, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.54
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also products
Strengths as well as weaknesses of rare earth magnets.
Pros
- They have constant strength, and over around ten years their attraction force decreases symbolically – ~1% (in testing),
- Magnets perfectly defend themselves against loss of magnetization caused by foreign field sources,
- A magnet with a shiny gold surface has an effective appearance,
- They are known for high magnetic induction at the operating surface, which improves attraction properties,
- Through (adequate) combination of ingredients, they can achieve high thermal strength, enabling operation at temperatures reaching 230°C and above...
- Thanks to the possibility of free forming and customization to specialized solutions, NdFeB magnets can be modeled in a broad palette of forms and dimensions, which makes them more universal,
- Significant place in advanced technology sectors – they find application in magnetic memories, electric drive systems, medical devices, and industrial machines.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Weaknesses
- At very strong impacts they can break, therefore we advise placing them in steel cases. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- We warn that neodymium magnets can reduce their strength at high temperatures. To prevent this, we advise our specialized [AH] magnets, which work effectively even at 230°C.
- They oxidize in a humid environment. For use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- We suggest a housing - magnetic mount, due to difficulties in realizing nuts inside the magnet and complicated shapes.
- Potential hazard related to microscopic parts of magnets can be dangerous, if swallowed, which gains importance in the context of child health protection. It is also worth noting that small components of these products are able to complicate diagnosis medical after entering the body.
- Due to expensive raw materials, their price is higher than average,
Holding force characteristics
Magnetic strength at its maximum – what it depends on?
- on a block made of mild steel, perfectly concentrating the magnetic field
- with a thickness minimum 10 mm
- with a plane cleaned and smooth
- without any air gap between the magnet and steel
- during pulling in a direction perpendicular to the plane
- at standard ambient temperature
Practical aspects of lifting capacity – factors
- Clearance – existence of foreign body (paint, dirt, air) acts as an insulator, which lowers capacity rapidly (even by 50% at 0.5 mm).
- Loading method – declared lifting capacity refers to detachment vertically. When applying parallel force, the magnet holds much less (typically approx. 20-30% of nominal force).
- Plate thickness – too thin sheet does not close the flux, causing part of the power to be lost to the other side.
- Material composition – different alloys attracts identically. High carbon content worsen the interaction with the magnet.
- Smoothness – full contact is possible only on polished steel. Rough texture create air cushions, weakening the magnet.
- Temperature influence – hot environment reduces magnetic field. Exceeding the limit temperature can permanently damage the magnet.
Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the lifting capacity is smaller. In addition, even a slight gap between the magnet and the plate lowers the holding force.
H&S for magnets
Fragile material
NdFeB magnets are ceramic materials, which means they are prone to chipping. Collision of two magnets leads to them breaking into shards.
Compass and GPS
GPS units and mobile phones are highly susceptible to magnetism. Direct contact with a strong magnet can ruin the sensors in your phone.
Data carriers
Avoid bringing magnets near a wallet, laptop, or TV. The magnetic field can irreversibly ruin these devices and wipe information from cards.
Flammability
Dust created during cutting of magnets is self-igniting. Do not drill into magnets without proper cooling and knowledge.
Keep away from children
Strictly store magnets out of reach of children. Risk of swallowing is significant, and the effects of magnets clamping inside the body are very dangerous.
Metal Allergy
It is widely known that nickel (standard magnet coating) is a potent allergen. If your skin reacts to metals, avoid direct skin contact or opt for versions in plastic housing.
Health Danger
Individuals with a ICD must keep an large gap from magnets. The magnetism can disrupt the operation of the implant.
Heat sensitivity
Standard neodymium magnets (N-type) lose magnetization when the temperature surpasses 80°C. Damage is permanent.
Serious injuries
Danger of trauma: The attraction force is so immense that it can result in blood blisters, crushing, and even bone fractures. Use thick gloves.
Conscious usage
Be careful. Rare earth magnets act from a distance and snap with massive power, often quicker than you can react.
