tel: +48 888 99 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our store's offer. All "neodymium magnets" on our website are available for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnets for fishing F400 GOLD

Where to purchase very strong neodymium magnet? Holders with magnets in airtight and durable enclosure are ideally suited for use in difficult weather conditions, including during snow and rain check...

magnetic holders

Holders with magnets can be applied to improve production processes, exploring underwater areas, or finding meteors from gold see more...

Enjoy delivery of your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 50x50x25 / N38 - lamellar magnet

lamellar magnet

Catalog no 020168

GTIN: 5906301811749

0

length [±0,1 mm]

50 mm

Width [±0,1 mm]

50 mm

Height [±0,1 mm]

25 mm

Weight

468.75 g

Magnetization Direction

↑ axial

Load capacity

98.71 kg / 968.01 N

Magnetic Induction

413.25 mT

Coating

[NiCuNi] nickel

182.00 with VAT / pcs + price for transport

147.97 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
147.97 ZŁ
182.00 ZŁ
price from 5 pcs
139.09 ZŁ
171.08 ZŁ
price from 15 pcs
130.21 ZŁ
160.16 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 50x50x25 / N38 - lamellar magnet

Specification/characteristics MPL 50x50x25 / N38 - lamellar magnet
properties
values
Cat. no.
020168
GTIN
5906301811749
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
50 mm [±0,1 mm]
Width
50 mm [±0,1 mm]
Height
25 mm [±0,1 mm]
Weight
468.75 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
98.71 kg / 968.01 N
Magnetic Induction ~ ?
413.25 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets i.e. MPL 50x50x25 / N38 are magnets made from neodymium in a rectangular form. They are known for their exceptionally potent magnetic properties, which are much stronger than traditional ferrite magnets.
Due to their power, flat magnets are commonly used in devices that need very strong attraction.
The standard temperature resistance of these magnets is 80 °C, but depending on the dimensions, this value rises.
In addition, flat magnets usually have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, to improve their durability.
The magnet with the designation MPL 50x50x25 / N38 and a lifting capacity of 98.71 kg with a weight of a mere 468.75 grams, making it the perfect choice for applications requiring a flat shape.
Neodymium flat magnets offer a range of advantages compared to other magnet shapes, which cause them being an ideal choice for a multitude of projects:
Contact surface: Due to their flat shape, flat magnets guarantee a larger contact surface with adjacent parts, which can be beneficial in applications needing a stronger magnetic connection.
Technology applications: These magnets are often used in many devices, such as sensors, stepper motors, or speakers, where the thin and wide shape is crucial for their operation.
Mounting: This form's flat shape makes mounting, particularly when it is necessary to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets allows designers greater flexibility in placing them in devices, which can be more difficult with magnets of more complex shapes.
Stability: In some applications, the flat base of the flat magnet may offer better stability, reducing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet is dependent on the specific application and requirements. In some cases, other shapes, such as cylindrical or spherical, are a better choice.
Magnets attract objects made of ferromagnetic materials, such as iron, objects containing nickel, cobalt or alloys of metals with magnetic properties. Moreover, magnets may weaker affect some other metals, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
The operation of magnets is based on the properties of the magnetic field, which is generated by the movement of electric charges within their material. Magnetic fields of magnets creates attractive interactions, which affect objects made of nickel or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which attract each other when they are different. Similar poles, e.g. two north poles, repel each other.
Thanks to this principle of operation, magnets are commonly used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them perfect for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its size and the material it is made of.
Magnets do not attract plastic, glass, wood and most gemstones. Moreover, magnets do not affect most metals, such as copper items, aluminum materials, copper, aluminum, and gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless they are subjected to an extremely strong magnetic field.
It should be noted that high temperatures can weaken the magnet's effect. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards or electronic devices sensitive to magnetic fields. For this reason, it is important to avoid placing magnets near such devices.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic field very well,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in many variants of shapes or sizes, which amplifies their universality in usage.
  • Significant importance in the industry of new technologies – are used in computer drives, electric motors, medical apparatus or other advanced devices.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Possible danger to health from tiny fragments of magnets pose a threat, when accidentally ingested, which is crucial in the context of children's health. It's also worth noting that small elements of these magnets are able to complicate diagnosis when they are in the body.

Handle with Care: Neodymium Magnets

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or in their path when attract. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a severe pressure or even a fracture.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnetic are incredibly fragile, they easily fall apart as well as can crumble.

Neodymium magnetic are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Safety rules!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98