tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our store's offer. All "magnets" on our website are in stock for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase powerful neodymium magnet? Magnetic holders in airtight and durable steel enclosure are excellent for use in difficult, demanding weather conditions, including in the rain and snow more information...

magnets with holders

Holders with magnets can be applied to improve production processes, underwater exploration, or searching for meteors from gold see more...

Enjoy delivery of your order on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x150 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130289

GTIN: 5906301812821

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

150 mm

Weight

0.01 g

393.60 with VAT / pcs + price for transport

320.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
320.00 ZŁ
393.60 ZŁ
price from 2200 pcs
304.00 ZŁ
373.92 ZŁ
price from 4400 pcs
288.00 ZŁ
354.24 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

SM 25x150 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x150 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130289
GTIN
5906301812821
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
150 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are embedded in a casing made of stainless steel usually AISI304. In this way, it is possible to precisely remove ferromagnetic particles from other materials. An important element of its operation is the repulsion of magnetic poles N and S, which allows magnetic substances to be targeted. The thickness of the magnet and its structure's pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic elements. If the cans are ferromagnetic, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in the food industry for the elimination of metallic contaminants, including iron fragments or iron dust. Our rollers are made from durable acid-resistant steel, AISI 304, suitable for contact with food.
Magnetic rollers, often called cylindrical magnets, are employed in metal separation, food production as well as recycling. They help in removing iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of neodymium magnets placed in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars stand out in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Usually it is believed that the stronger the magnet, the more effective. Nevertheless, the strength of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is thin, the magnetic force lines are short. On the other hand, in the case of a thicker magnet, the force lines are longer and reach further.
For making the casings of magnetic separators - rollers, usually stainless steel is utilized, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, type AISI 316 steel is highly recommended thanks to its exceptional anti-corrosion properties.
Magnetic rollers stand out for their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, in contrast to other devices that often use complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. Disadvantages may include the requirement for frequent cleaning, greater weight, and potential installation difficulties.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Testing of the rollers should be carried out once every 24 months. Care should be taken, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the glossy nickel, gold, or silver finish, the element gains an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in various forms and dimensions, which amplifies their universality in usage.
  • Wide application in advanced technologically fields – are utilized in HDD drives, electric motors, medical equipment or other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • High temperatures can reduce the power of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent reduction in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Health risk to health from tiny fragments of magnets pose a threat, in case of ingestion, which is particularly important in the context of children's health. Additionally, small elements of these magnets can hinder the diagnostic process when they are in the body.

Be Cautious with Neodymium Magnets

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are the strongest magnets ever created, and their strength can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnetic are extremely fragile, they easily fall apart as well as can crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Never bring neodymium magnets close to a phone and GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

If the joining of neodymium magnets is not controlled, at that time they may crumble and crack. You can't move them to each other. At a distance less than 10 cm you should have them very firmly.

  Neodymium magnets should not be in the vicinity youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Pay attention!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98