e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our offer. Practically all "magnets" on our website are in stock for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy very strong magnet? Magnet holders in airtight, solid steel casing are ideally suited for use in difficult climate conditions, including in the rain and snow see more...

magnets with holders

Holders with magnets can be used to improve production processes, exploring underwater areas, or searching for space rocks from gold more...

Order is always shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships today (order by 14:00)

SM 25x150 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130289

GTIN: 5906301812821

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

150 mm

Weight

0.01 g

393.60 with VAT / pcs + price for transport

320.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
320.00 ZŁ
393.60 ZŁ
price from 10 pcs
304.00 ZŁ
373.92 ZŁ
price from 15 pcs
288.00 ZŁ
354.24 ZŁ

Not sure what to buy?

Give us a call +48 888 99 98 98 or send us a note using our online form the contact form page.
Strength along with structure of magnets can be tested with our our magnetic calculator.

Same-day processing for orders placed before 14:00.

SM 25x150 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x150 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130289
GTIN
5906301812821
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
150 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This product serves to catch ferromagnetic impurities from raw materials. Its task is to separate metal filings from the transported material. High magnetic induction allows catching the finest iron particles.
The construction is based on a sealed stainless steel housing. Inside, there is a stack of strong neodymium magnets in a special configuration. Thanks to this, the rod is durable and hygienic.
Metal impurities are strongly attracted, making manual removal difficult. You can use compressed air or special non-magnetic strippers. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
The more Gauss, the smaller and weakly magnetic particles will be caught. For basic iron protection, standard power is enough. For the food and precision industry, we recommend the highest parameters.
Yes, as a manufacturer, we make rods of any length and diameter (standard is 25mm and 32mm). You can choose a mounting method compatible with your project. Contact us for a quote on non-standard dimensions.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their immense field intensity, neodymium magnets offer the following advantages:

  • They do not lose their magnetism, even after nearly 10 years – the loss of power is only ~1% (according to tests),
  • They show superior resistance to demagnetization from external field exposure,
  • By applying a reflective layer of nickel, the element gains a modern look,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for custom shaping as well as customization to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
  • Key role in new technology industries – they are used in hard drives, electric drives, healthcare devices or even high-tech tools,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and additionally reinforces its overall resistance,
  • They lose strength at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to humidity can oxidize. Therefore, for outdoor applications, we advise waterproof types made of non-metallic composites,
  • Limited ability to create threads in the magnet – the use of a external casing is recommended,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is significant in the context of child safety. Additionally, minuscule fragments from these products have the potential to hinder health screening once in the system,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting capacity of the magnetwhat contributes to it?

The given holding capacity of the magnet means the highest holding force, calculated under optimal conditions, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • at room temperature

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is conditioned by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed with the use of a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular detachment force, whereas under shearing force the load capacity is reduced by as much as fivefold. Moreover, even a slight gap {between} the magnet’s surface and the plate lowers the holding force.

Handle Neodymium Magnets with Caution

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will crack or crumble with uncontrolled joining to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are highly fragile, they easily fall apart and can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Be careful!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98