tel: +48 888 99 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. All magnesy neodymowe in our store are in stock for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase very strong neodymium magnet? Holders with magnets in solid and airtight steel casing are excellent for use in difficult, demanding weather conditions, including during rain and snow more...

magnetic holders

Magnetic holders can be used to enhance manufacturing, underwater discoveries, or locating space rocks from gold read...

Shipping is always shipped on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x150 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130289

GTIN: 5906301812821

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

150 mm

Weight

0.01 g

393.60 with VAT / pcs + price for transport

320.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
320.00 ZŁ
393.60 ZŁ
price from 10 pcs
304.00 ZŁ
373.92 ZŁ
price from 15 pcs
288.00 ZŁ
354.24 ZŁ

Need advice?

Give us a call +48 22 499 98 98 if you prefer let us know through our online form the contact form page.
Parameters as well as shape of magnets can be verified with our modular calculator.

Same-day processing for orders placed before 14:00.

SM 25x150 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x150 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130289
GTIN
5906301812821
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
150 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, which are welded in a construction made of stainless steel usually AISI304. As a result, it is possible to efficiently segregate ferromagnetic particles from different substances. A key aspect of its operation is the use of repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be attracted. The thickness of the magnet and its structure pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic particles. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are employed in the food industry to clear metallic contaminants, including iron fragments or iron dust. Our rollers are built from durable acid-resistant steel, EN 1.4301, suitable for contact with food.
Magnetic rollers, otherwise magnetic separators, find application in metal separation, food production as well as recycling. They help in removing iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets placed in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, allowing for easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars stand out in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Usually it is believed that the greater the magnet's power, the better. However, the value of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines are more compressed. On the other hand, in the case of a thicker magnet, the force lines will be longer and reach further.
For making the casings of magnetic separators - rollers, most often stainless steel is used, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, AISI 316 steel exhibits the best resistance due to its outstanding corrosion resistance.
Magnetic rollers are characterized by their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, as opposed to other separators that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the requirement for frequent cleaning, greater weight, and potential installation difficulties.
By ensuring proper maintenance of neodymium magnetic rollers, it is recommended washing after each use, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Testing of the rollers should be carried out once every 24 months. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their consistent magnetic energy, neodymium magnets have these key benefits:

  • They retain their full power for nearly ten years – the drop is just ~1% (according to analyses),
  • They are highly resistant to demagnetization caused by external magnetic sources,
  • Thanks to the glossy finish and silver coating, they have an elegant appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • With the option for fine forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
  • Key role in cutting-edge sectors – they find application in hard drives, electromechanical systems, healthcare devices and sophisticated instruments,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture while also increases its overall durability,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to damp air can degrade. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is difficult,
  • Safety concern linked to microscopic shards may arise, in case of ingestion, which is important in the health of young users. It should also be noted that tiny components from these assemblies have the potential to complicate medical imaging after being swallowed,
  • In cases of mass production, neodymium magnet cost may not be economically viable,

Optimal lifting capacity of a neodymium magnetwhat contributes to it?

The given strength of the magnet corresponds to the optimal strength, determined under optimal conditions, that is:

  • with mild steel, used as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • at room temperature

Practical lifting capacity: influencing factors

Practical lifting force is dependent on factors, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under parallel forces the lifting capacity is smaller. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the holding force.

Handle with Care: Neodymium Magnets

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

  Neodymium magnets should not be in the vicinity youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are the strongest magnets ever created, and their power can shock you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

In the case of placing a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are delicate and can easily crack and get damaged.

Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Exercise caution!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98