e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. All "neodymium magnets" in our store are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight, solid steel enclosure are perfect for use in variable and difficult weather conditions, including in the rain and snow more...

magnets with holders

Holders with magnets can be used to enhance production, underwater exploration, or searching for meteors from gold check...

Enjoy delivery of your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 3 days!

SM 25x150 [2xM8] / N42 - magnetic roller

magnetic separator

catalog number 130289


diameter Ø

25 mm [±0,1 mm]


150 mm [±0,1 mm]

max. temperature

≤ 80 °C

393.60 PLN gross price (including VAT) / pcs +

320.00 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
320.00 PLN
393.60 PLN
price from 7 pcs
304.00 PLN
373.92 PLN
price from 14 pcs
288.00 PLN
354.24 PLN

Don't know what to choose?

Give us a call tel: +48 888 99 98 98 or write through form on the contact page. You can check the power as well as the shape of neodymium magnets in our magnetic calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: magnetic separator 25x150 [2xM8] / N42

Characteristics: magnetic separator 25x150 [2xM8] / N42
catalog number
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
diameter Ø
25 mm [±0,1 mm]
150 mm [±0,1 mm]
max. temperature ?
≤ 80 °C
0.01 g
execution tolerance
± 0.1 mm
rodzaj materiału
AISI 304 - bezpieczna dla żywności
rodzaj magnesów
NdFeB N42
ilość gwintów
2x [M8] wewnętrzne
obwodowa - 5 nabiegunniki
indukcja magnetyczna
~ 6 500 Gauss [±5%]
max. temp. pracy
poniżej ≤ 80°C
grubość rury osłonowej
1 mm

Magnetic properties of the material N42

material characteristics N42
remenance Br [Min. - Max.] ?
remenance Br [Min. - Max.] ?
coercivity bHc ?
coercivity bHc ?
actual internal force iHc
≥ 12
actual internal force iHc
≥ 955
energy density [Min. - Max.]
BH max MGOe
energy density [Min. - Max.]
BH max KJ/m
max. temperature
≤ 80

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Vickers hardness
Curie Temperature TC
312 - 380
Curie Temperature TF
593 - 716
Specific resistance
Bending strength
Compressive strength
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
Young's modulus
1.7 x 104
The device rod magnetic is based on the use of neodymium magnets, placed in a construction made of stainless steel mostly AISI304. In this way, it is possible to efficiently remove ferromagnetic elements from the mixture. A key aspect of its operation is the repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be targeted. The thickness of the magnet and its structure pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators serve to separate ferromagnetic elements. If the cans are ferromagnetic, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in the food industry to clear metallic contaminants, including iron fragments or iron dust. Our rollers are constructed from durable acid-resistant steel, AISI 304, suitable for contact with food.
Magnetic rollers, often called magnetic separators, are used in food production, metal separation as well as waste processing. They help in eliminating iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are built with neodymium magnets embedded in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 and N52.
Usually it is believed that the stronger the magnet, the more efficient it is. However, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is more flat, the magnetic force lines are short. On the other hand, in the case of a thicker magnet, the force lines will be longer and extend over a greater distance.
For creating the casings of magnetic separators - rollers, usually stainless steel is used, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, type AISI 316 steel is recommended due to its exceptional anti-corrosion properties.
Magnetic rollers are characterized by their unique configuration of poles and their capability to attract magnetic substances directly onto their surface, in contrast to other separators that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the requirement for frequent cleaning, greater weight, and potential installation difficulties.
To properly maintain of neodymium magnetic rollers, it is suggested {to clean them regularly from contaminants, avoid extreme temperatures up to 80°C, and to clean them regularly, avoiding temperatures up to 80°C. The rollers have an IP67 waterproof rating, so if they are not watertight, the magnets inside may rust and lose their strength. Roller inspections are recommended to be conducted every two years. Care should be taken as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it can wear out, which, in turn, may lead to issues with the magnetic rod becoming unsealed and product contamination. The Roller operating range equals its diameter, fi25mm is approximately 25mm active range, while fi32 is about 40mm.

Compilation of suggested goods

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose power over time. After approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in many variants of shapes and sizes, which amplifies their universality in usage.
  • Significant importance in modern technologies – are used in HDD drives, electric drive mechanisms, medical devices or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Possible danger arising from small pieces of magnets pose a threat, in case of ingestion, which is crucial in the aspect of protecting young children. It's also worth noting that tiny parts of these products can complicate diagnosis when they are in the body.

Safety Precautions

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a significant injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a significant pressure or a fracture.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnetic are extremely delicate, they easily fall apart as well as can crumble.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98