SM 25x150 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130289
GTIN: 5906301812821
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
150 mm
Weight
0.01 g
393.60 ZŁ with VAT / pcs + price for transport
320.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure what to buy?
Give us a call
+48 888 99 98 98
or send us a note using
our online form
the contact form page.
Strength along with structure of magnets can be tested with our
our magnetic calculator.
Same-day processing for orders placed before 14:00.
SM 25x150 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their immense field intensity, neodymium magnets offer the following advantages:
- They do not lose their magnetism, even after nearly 10 years – the loss of power is only ~1% (according to tests),
- They show superior resistance to demagnetization from external field exposure,
- By applying a reflective layer of nickel, the element gains a modern look,
- The outer field strength of the magnet shows advanced magnetic properties,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for custom shaping as well as customization to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
- Key role in new technology industries – they are used in hard drives, electric drives, healthcare devices or even high-tech tools,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of rare earth magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and additionally reinforces its overall resistance,
- They lose strength at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to humidity can oxidize. Therefore, for outdoor applications, we advise waterproof types made of non-metallic composites,
- Limited ability to create threads in the magnet – the use of a external casing is recommended,
- Potential hazard related to magnet particles may arise, in case of ingestion, which is significant in the context of child safety. Additionally, minuscule fragments from these products have the potential to hinder health screening once in the system,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Maximum lifting capacity of the magnet – what contributes to it?
The given holding capacity of the magnet means the highest holding force, calculated under optimal conditions, specifically:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a smooth surface
- in conditions of no clearance
- under perpendicular detachment force
- at room temperature
Practical aspects of lifting capacity – factors
In practice, the holding capacity of a magnet is conditioned by these factors, in descending order of importance:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed with the use of a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular detachment force, whereas under shearing force the load capacity is reduced by as much as fivefold. Moreover, even a slight gap {between} the magnet’s surface and the plate lowers the holding force.
Handle Neodymium Magnets with Caution
Neodymium magnets can demagnetize at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
People with pacemakers are advised to avoid neodymium magnets.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets will crack or crumble with uncontrolled joining to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are highly fragile, they easily fall apart and can become damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Be careful!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
