SM 25x250 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130293
GTIN: 5906301812869
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
250 mm
Weight
0.01 g
688.80 ZŁ with VAT / pcs + price for transport
560.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Call us now
+48 22 499 98 98
if you prefer send us a note using
request form
our website.
Lifting power and structure of magnets can be reviewed with our
our magnetic calculator.
Order by 14:00 and we’ll ship today!
SM 25x250 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- They virtually do not lose power, because even after ten years, the performance loss is only ~1% (based on calculations),
- They show superior resistance to demagnetization from external field exposure,
- Thanks to the polished finish and silver coating, they have an aesthetic appearance,
- They possess significant magnetic force measurable at the magnet’s surface,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for precise shaping and adjustment to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
- Important function in modern technologies – they find application in computer drives, electromechanical systems, clinical machines along with other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall robustness,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a moist environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of polymer,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is restricted,
- Potential hazard from tiny pieces may arise, if ingested accidentally, which is crucial in the protection of children. Moreover, miniature parts from these products may interfere with diagnostics if inside the body,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Maximum holding power of the magnet – what it depends on?
The given strength of the magnet corresponds to the optimal strength, assessed under optimal conditions, specifically:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- in conditions of no clearance
- with vertical force applied
- at room temperature
Impact of factors on magnetic holding capacity in practice
In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, however under parallel forces the lifting capacity is smaller. Moreover, even a small distance {between} the magnet’s surface and the plate reduces the lifting capacity.
Be Cautious with Neodymium Magnets
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Magnets made of neodymium are fragile as well as can easily crack and get damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a significant pressure or even a fracture.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Warning!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.
