tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. Practically all "neodymium magnets" on our website are available for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnet for searching F300 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in airtight and durable enclosure are excellent for use in challenging weather, including snow and rain check...

magnets with holders

Holders with magnets can be applied to facilitate production processes, exploring underwater areas, or locating space rocks from gold check...

Shipping is always shipped if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x250 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130293

GTIN: 5906301812869

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

250 mm

Weight

0.01 g

688.80 with VAT / pcs + price for transport

560.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
560.00 ZŁ
688.80 ZŁ
price from 5 pcs
532.00 ZŁ
654.36 ZŁ
price from 10 pcs
504.00 ZŁ
619.92 ZŁ

Can't decide what to choose?

Contact us by phone +48 888 99 98 98 if you prefer contact us using inquiry form the contact page.
Parameters as well as appearance of a magnet can be checked with our force calculator.

Orders submitted before 14:00 will be dispatched today!

SM 25x250 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x250 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130293
GTIN
5906301812869
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
250 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are embedded in a casing made of stainless steel usually AISI304. In this way, it is possible to efficiently segregate ferromagnetic elements from the mixture. A key aspect of its operation is the repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be attracted. The thickness of the magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to separate ferromagnetic particles. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers find application in food production for the elimination of metallic contaminants, including iron fragments or iron dust. Our rods are made from acid-resistant steel, AISI 304, suitable for contact with food.
Magnetic rollers, often called magnetic separators, are used in metal separation, food production as well as recycling. They help in removing iron dust during the process of separating metals from other wastes.
Our magnetic rollers consist of neodymium magnets placed in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, enabling quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in materials, N42 and N52.
Generally it is believed that the stronger the magnet, the better. Nevertheless, the strength of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines will be more compressed. By contrast, when the magnet is thick, the force lines will be extended and reach further.
For creating the casings of magnetic separators - rollers, most often stainless steel is used, particularly types AISI 304, AISI 316, and AISI 316L.
In a saltwater environment, type AISI 316 steel is highly recommended due to its exceptional corrosion resistance.
Magnetic rollers are characterized by their unique configuration of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other devices that often use more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. On the other hand, among the drawbacks, one can mention higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, it is recommended regularly cleaning them from contaminants, avoiding extreme temperatures above 80 degrees, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can rust and lose their power. Testing of the rollers is recommended be carried out once every 24 months. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They have unchanged lifting capacity, and over more than 10 years their attraction force decreases symbolically – ~1% (in testing),
  • They show strong resistance to demagnetization from external field exposure,
  • In other words, due to the metallic silver coating, the magnet obtains an stylish appearance,
  • They have exceptional magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • The ability for precise shaping and adaptation to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
  • Significant impact in new technology industries – they are utilized in HDDs, rotating machines, diagnostic apparatus or even other advanced devices,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall strength,
  • They lose field intensity at high temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to humidity can rust. Therefore, for outdoor applications, we advise waterproof types made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
  • Health risk related to magnet particles may arise, especially if swallowed, which is important in the family environments. Additionally, tiny components from these magnets might hinder health screening if inside the body,
  • In cases of mass production, neodymium magnet cost may be a barrier,

Detachment force of the magnet in optimal conditionswhat contributes to it?

The given holding capacity of the magnet corresponds to the highest holding force, determined under optimal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • in normal thermal conditions

Key elements affecting lifting force

The lifting capacity of a magnet depends on in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, whereas under attempts to slide the magnet the load capacity is reduced by as much as fivefold. In addition, even a small distance {between} the magnet and the plate reduces the load capacity.

Handle Neodymium Magnets Carefully

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets may crack or crumble with uncontrolled joining to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them extremely firmly.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

 Keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are extremely fragile, they easily crack and can crumble.

Magnets made of neodymium are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Warning!

To illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98