tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. All magnesy neodymowe on our website are available for immediate delivery (check the list). Check out the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F200 GOLD

Where to purchase powerful magnet? Magnetic holders in airtight and durable steel casing are perfect for use in variable and difficult climate conditions, including in the rain and snow more...

magnets with holders

Holders with magnets can be applied to improve production processes, underwater discoveries, or finding meteorites from gold read...

Order is shipped on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGGZ 43x6 [M6] GZ / N38 - rubber magnetic holder external thread

rubber magnetic holder external thread

Catalog no 340312

GTIN: 5906301814740

5

Diameter Ø [±0,1 mm]

43 mm

Height [±0,1 mm]

6 mm

Weight

36 g

Load capacity

8.7 kg / 85.32 N

10.46 with VAT / pcs + price for transport

8.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
8.50 ZŁ
10.46 ZŁ
price from 50 pcs
7.99 ZŁ
9.83 ZŁ
price from 100 pcs
7.48 ZŁ
9.20 ZŁ

Want to negotiate?

Pick up the phone and ask +48 888 99 98 98 alternatively get in touch using contact form the contact section.
Parameters and form of a magnet can be analyzed using our modular calculator.

Same-day processing for orders placed before 14:00.

UMGGZ 43x6 [M6] GZ / N38 - rubber magnetic holder external thread

Specification/characteristics UMGGZ 43x6 [M6] GZ / N38 - rubber magnetic holder external thread
properties
values
Cat. no.
340312
GTIN
5906301814740
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
43 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
36 g [±0,1 mm]
Load capacity ~ ?
8.7 kg / 85.32 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their notable holding force, neodymium magnets have these key benefits:

  • Their magnetic field is durable, and after around 10 years, it drops only by ~1% (theoretically),
  • They show exceptional resistance to demagnetization from external field exposure,
  • Because of the reflective layer of gold, the component looks aesthetically refined,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • Thanks to their high temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • With the option for fine forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
  • Important function in cutting-edge sectors – they serve a purpose in hard drives, electric drives, diagnostic apparatus and high-tech tools,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to external force, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and additionally reinforces its overall durability,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of plastic for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is restricted,
  • Health risk linked to microscopic shards may arise, when consumed by mistake, which is crucial in the context of child safety. It should also be noted that minuscule fragments from these devices can hinder health screening if inside the body,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Breakaway strength of the magnet in ideal conditionswhat affects it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, determined in the best circumstances, specifically:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a polished side
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Practical lifting capacity: influencing factors

In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, however under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the holding force.

Caution with Neodymium Magnets

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets jump and also clash mutually within a distance of several to almost 10 cm from each other.

Neodymium magnets are extremely fragile, resulting in breaking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Safety precautions!

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98