UMGGZ 43x6 [M6] GZ / N38 - rubber magnetic holder external thread
rubber magnetic holder external thread
Catalog no 340312
GTIN: 5906301814740
Diameter Ø [±0,1 mm]
43 mm
Height [±0,1 mm]
6 mm
Weight
36 g
Load capacity
8.7 kg / 85.32 N
10.46 ZŁ with VAT / pcs + price for transport
8.50 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Pick up the phone and ask
+48 22 499 98 98
otherwise contact us through
form
the contact page.
Lifting power along with form of a magnet can be analyzed with our
online calculation tool.
Same-day shipping for orders placed before 14:00.
UMGGZ 43x6 [M6] GZ / N38 - rubber magnetic holder external thread
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their pulling strength, neodymium magnets provide the following advantages:
- Their power is durable, and after approximately ten years, it drops only by ~1% (according to research),
- They remain magnetized despite exposure to magnetic noise,
- By applying a bright layer of gold, the element gains a modern look,
- The outer field strength of the magnet shows remarkable magnetic properties,
- Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- The ability for precise shaping and adaptation to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
- Important function in new technology industries – they serve a purpose in HDDs, electromechanical systems, clinical machines along with technologically developed systems,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to external force, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall resistance,
- They lose field intensity at increased temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to damp air can rust. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
- Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
- Potential hazard from tiny pieces may arise, when consumed by mistake, which is crucial in the context of child safety. Additionally, minuscule fragments from these products might hinder health screening if inside the body,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Breakaway strength of the magnet in ideal conditions – what it depends on?
The given lifting capacity of the magnet means the maximum lifting force, assessed in the best circumstances, specifically:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a refined outer layer
- with no separation
- with vertical force applied
- in normal thermal conditions
Magnet lifting force in use – key factors
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under perpendicular forces, whereas under shearing force the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate reduces the holding force.
Safety Precautions
Keep neodymium magnets away from GPS and smartphones.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can become demagnetized at high temperatures.
Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
If have a finger between or on the path of attracting magnets, there may be a serious cut or a fracture.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can shock you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.
Magnets made of neodymium are incredibly fragile, they easily fall apart and can become damaged.
Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Warning!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are very powerful neodymium magnets?.
