Powerful neodymium magnets: discs and cylinders

Need strong magnetic field? Our range includes wide selection of disc, cylindrical and ring magnets. Perfect for for domestic applications, workshop and industrial tasks. Browse assortment with fast shipping.

discover magnet catalog

Magnet fishing: solid F200/F400 sets

Discover your passion related to seabed exploration! Our specialized grips (F200, F400) provide safety guarantee and huge lifting capacity. Solid, corrosion-resistant housing and strong lines will perform in rivers and lakes.

find your set

Professional threaded grips

Proven solutions for mounting without drilling. Threaded mounts (external or internal) provide instant organization of work on production halls. They are indispensable mounting lamps, sensors and banners.

check available threads

🚚 Order by 14:00 – we'll ship today!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MPL 20x8x4 / N38 - lamellar magnet

lamellar magnet

Catalog no 020133

GTIN/EAN: 5906301811398

5.00

length

20 mm [±0,1 mm]

Width

8 mm [±0,1 mm]

Height

4 mm [±0,1 mm]

Weight

4.8 g

Magnetization Direction

↑ axial

Load capacity

4.79 kg / 46.98 N

Magnetic Induction

336.99 mT / 3370 Gs

Coating

[NiCuNi] Nickel

3.67 with VAT / pcs + price for transport

2.98 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.98 ZŁ
3.67 ZŁ
price from 250 pcs
2.80 ZŁ
3.45 ZŁ
price from 850 pcs
2.62 ZŁ
3.23 ZŁ
Need help making a decision?

Give us a call +48 888 99 98 98 otherwise let us know by means of inquiry form the contact form page.
Strength as well as appearance of neodymium magnets can be tested with our modular calculator.

Order by 14:00 and we’ll ship today!

Technical data - MPL 20x8x4 / N38 - lamellar magnet

Specification / characteristics - MPL 20x8x4 / N38 - lamellar magnet

properties
properties values
Cat. no. 020133
GTIN/EAN 5906301811398
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
length 20 mm [±0,1 mm]
Width 8 mm [±0,1 mm]
Height 4 mm [±0,1 mm]
Weight 4.8 g
Magnetization Direction ↑ axial
Load capacity ~ ? 4.79 kg / 46.98 N
Magnetic Induction ~ ? 336.99 mT / 3370 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MPL 20x8x4 / N38 - lamellar magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering simulation of the magnet - data

Presented values constitute the outcome of a physical analysis. Results rely on models for the material Nd2Fe14B. Operational parameters might slightly differ. Please consider these calculations as a supplementary guide during assembly planning.

Table 1: Static pull force (force vs distance) - interaction chart
MPL 20x8x4 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 3368 Gs
336.8 mT
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
medium risk
1 mm 2818 Gs
281.8 mT
3.35 kg / 7.39 lbs
3352.3 g / 32.9 N
medium risk
2 mm 2266 Gs
226.6 mT
2.17 kg / 4.78 lbs
2167.6 g / 21.3 N
medium risk
3 mm 1794 Gs
179.4 mT
1.36 kg / 3.00 lbs
1358.6 g / 13.3 N
safe
5 mm 1130 Gs
113.0 mT
0.54 kg / 1.19 lbs
538.9 g / 5.3 N
safe
10 mm 416 Gs
41.6 mT
0.07 kg / 0.16 lbs
73.0 g / 0.7 N
safe
15 mm 187 Gs
18.7 mT
0.01 kg / 0.03 lbs
14.7 g / 0.1 N
safe
20 mm 97 Gs
9.7 mT
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
safe
30 mm 35 Gs
3.5 mT
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
safe
50 mm 9 Gs
0.9 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe

Table 2: Shear capacity (vertical surface)
MPL 20x8x4 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.96 kg / 2.11 lbs
958.0 g / 9.4 N
1 mm Stal (~0.2) 0.67 kg / 1.48 lbs
670.0 g / 6.6 N
2 mm Stal (~0.2) 0.43 kg / 0.96 lbs
434.0 g / 4.3 N
3 mm Stal (~0.2) 0.27 kg / 0.60 lbs
272.0 g / 2.7 N
5 mm Stal (~0.2) 0.11 kg / 0.24 lbs
108.0 g / 1.1 N
10 mm Stal (~0.2) 0.01 kg / 0.03 lbs
14.0 g / 0.1 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Vertical assembly (shearing) - vertical pull
MPL 20x8x4 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
1.44 kg / 3.17 lbs
1437.0 g / 14.1 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.96 kg / 2.11 lbs
958.0 g / 9.4 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.48 kg / 1.06 lbs
479.0 g / 4.7 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
2.40 kg / 5.28 lbs
2395.0 g / 23.5 N

Table 4: Material efficiency (saturation) - power losses
MPL 20x8x4 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.48 kg / 1.06 lbs
479.0 g / 4.7 N
1 mm
25%
1.20 kg / 2.64 lbs
1197.5 g / 11.7 N
2 mm
50%
2.40 kg / 5.28 lbs
2395.0 g / 23.5 N
3 mm
75%
3.59 kg / 7.92 lbs
3592.5 g / 35.2 N
5 mm
100%
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
10 mm
100%
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
11 mm
100%
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
12 mm
100%
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N

Table 5: Working in heat (material behavior) - thermal limit
MPL 20x8x4 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
OK
40 °C -2.2% 4.68 kg / 10.33 lbs
4684.6 g / 46.0 N
OK
60 °C -4.4% 4.58 kg / 10.10 lbs
4579.2 g / 44.9 N
80 °C -6.6% 4.47 kg / 9.86 lbs
4473.9 g / 43.9 N
100 °C -28.8% 3.41 kg / 7.52 lbs
3410.5 g / 33.5 N

Table 6: Two magnets (attraction) - forces in the system
MPL 20x8x4 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Sliding Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 11.19 kg / 24.67 lbs
4 784 Gs
1.68 kg / 3.70 lbs
1678 g / 16.5 N
N/A
1 mm 9.49 kg / 20.93 lbs
6 205 Gs
1.42 kg / 3.14 lbs
1424 g / 14.0 N
8.54 kg / 18.84 lbs
~0 Gs
2 mm 7.83 kg / 17.26 lbs
5 635 Gs
1.17 kg / 2.59 lbs
1175 g / 11.5 N
7.05 kg / 15.54 lbs
~0 Gs
3 mm 6.34 kg / 13.97 lbs
5 069 Gs
0.95 kg / 2.10 lbs
951 g / 9.3 N
5.70 kg / 12.57 lbs
~0 Gs
5 mm 4.02 kg / 8.85 lbs
4 035 Gs
0.60 kg / 1.33 lbs
602 g / 5.9 N
3.61 kg / 7.97 lbs
~0 Gs
10 mm 1.26 kg / 2.78 lbs
2 259 Gs
0.19 kg / 0.42 lbs
189 g / 1.9 N
1.13 kg / 2.50 lbs
~0 Gs
20 mm 0.17 kg / 0.38 lbs
832 Gs
0.03 kg / 0.06 lbs
26 g / 0.3 N
0.15 kg / 0.34 lbs
~0 Gs
50 mm 0.00 kg / 0.01 lbs
112 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
70 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
46 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
32 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
23 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
17 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Protective zones (implants) - precautionary measures
MPL 20x8x4 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 6.5 cm
Hearing aid 10 Gs (1.0 mT) 5.0 cm
Mechanical watch 20 Gs (2.0 mT) 4.0 cm
Mobile device 40 Gs (4.0 mT) 3.0 cm
Remote 50 Gs (5.0 mT) 3.0 cm
Payment card 400 Gs (40.0 mT) 1.5 cm
HDD hard drive 600 Gs (60.0 mT) 1.0 cm

Table 8: Dynamics (cracking risk) - collision effects
MPL 20x8x4 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 32.16 km/h
(8.93 m/s)
0.19 J
30 mm 55.18 km/h
(15.33 m/s)
0.56 J
50 mm 71.24 km/h
(19.79 m/s)
0.94 J
100 mm 100.75 km/h
(27.99 m/s)
1.88 J

Table 9: Corrosion resistance
MPL 20x8x4 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Pc)
MPL 20x8x4 / N38

Parameter Value SI Unit / Description
Magnetic Flux 5 277 Mx 52.8 µWb
Pc Coefficient 0.38 Low (Flat)

Table 11: Hydrostatics and buoyancy
MPL 20x8x4 / N38

Environment Effective steel pull Effect
Air (land) 4.79 kg Standard
Water (riverbed) 5.48 kg
(+0.69 kg buoyancy gain)
+14.5%
Warning: This magnet has a standard nickel coating. After use in water, it must be dried and maintained immediately, otherwise it will rust!
1. Vertical hold

*Caution: On a vertical wall, the magnet holds merely a fraction of its perpendicular strength.

2. Efficiency vs thickness

*Thin steel (e.g. computer case) drastically weakens the holding force.

3. Heat tolerance

*For standard magnets, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.38

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 020133-2026
Magnet Unit Converter
Force (pull)

Field Strength

See more products

This product is a very powerful magnet in the shape of a plate made of NdFeB material, which, with dimensions of 20x8x4 mm and a weight of 4.8 g, guarantees premium class connection. This rectangular block with a force of 46.98 N is ready for shipment in 24h, allowing for rapid realization of your project. The durable anti-corrosion layer ensures a long lifespan in a dry environment, protecting the core from oxidation.
Separating block magnets requires a technique based on sliding (moving one relative to the other), rather than forceful pulling apart. Watch your fingers! Magnets with a force of 4.79 kg can pinch very hard and cause hematomas. Using a screwdriver risks destroying the coating and permanently cracking the magnet.
They constitute a key element in the production of wind generators and material handling systems. They work great as fasteners under tiles, wood, or glass. Their rectangular shape facilitates precise gluing into milled sockets in wood or plastic.
For mounting flat magnets MPL 20x8x4 / N38, we recommend utilizing two-component adhesives (e.g., UHU Endfest, Distal), which ensure a durable bond with metal or plastic. For lighter applications or mounting on smooth surfaces, branded foam tape (e.g., 3M VHB) will work, provided the surface is perfectly degreased. Avoid chemically aggressive glues or hot glue, which can demagnetize neodymium (above 80°C).
Standardly, the MPL 20x8x4 / N38 model is magnetized through the thickness (dimension 4 mm), which means that the N and S poles are located on its largest, flat surfaces. In practice, this means that this magnet has the greatest attraction force on its main planes (20x8 mm), which is ideal for flat mounting. Such a pole arrangement ensures maximum holding capacity when pressing against the sheet, creating a closed magnetic circuit.
The presented product is a neodymium magnet with precisely defined parameters: 20 mm (length), 8 mm (width), and 4 mm (thickness). The key parameter here is the holding force amounting to approximately 4.79 kg (force ~46.98 N), which, with such a compact shape, proves the high grade of the material. The product meets the standards for N38 grade magnets.

Pros as well as cons of Nd2Fe14B magnets.

Benefits

Besides their stability, neodymium magnets are valued for these benefits:
  • They have unchanged lifting capacity, and over nearly ten years their performance decreases symbolically – ~1% (according to theory),
  • They maintain their magnetic properties even under strong external field,
  • Thanks to the shiny finish, the layer of Ni-Cu-Ni, gold-plated, or silver-plated gives an visually attractive appearance,
  • Magnets exhibit maximum magnetic induction on the outer layer,
  • Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
  • Considering the option of flexible molding and adaptation to specialized solutions, magnetic components can be modeled in a wide range of geometric configurations, which increases their versatility,
  • Significant place in future technologies – they are used in magnetic memories, electromotive mechanisms, diagnostic systems, and other advanced devices.
  • Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications

Weaknesses

Disadvantages of NdFeB magnets:
  • To avoid cracks upon strong impacts, we recommend using special steel holders. Such a solution protects the magnet and simultaneously improves its durability.
  • We warn that neodymium magnets can lose their strength at high temperatures. To prevent this, we advise our specialized [AH] magnets, which work effectively even at 230°C.
  • They oxidize in a humid environment. For use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
  • Due to limitations in producing nuts and complicated shapes in magnets, we recommend using cover - magnetic mount.
  • Possible danger resulting from small fragments of magnets can be dangerous, in case of ingestion, which gains importance in the context of child safety. It is also worth noting that small components of these devices can disrupt the diagnostic process medical when they are in the body.
  • High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which can limit application in large quantities

Holding force characteristics

Magnetic strength at its maximum – what it depends on?

Magnet power was defined for ideal contact conditions, including:
  • with the use of a yoke made of special test steel, guaranteeing full magnetic saturation
  • with a cross-section minimum 10 mm
  • characterized by even structure
  • under conditions of ideal adhesion (surface-to-surface)
  • for force applied at a right angle (pull-off, not shear)
  • in stable room temperature

What influences lifting capacity in practice

In practice, the actual lifting capacity depends on several key aspects, presented from most significant:
  • Gap between surfaces – every millimeter of separation (caused e.g. by veneer or dirt) significantly weakens the magnet efficiency, often by half at just 0.5 mm.
  • Angle of force application – highest force is reached only during pulling at a 90° angle. The force required to slide of the magnet along the plate is standardly several times lower (approx. 1/5 of the lifting capacity).
  • Plate thickness – insufficiently thick steel does not accept the full field, causing part of the flux to be escaped to the other side.
  • Steel type – mild steel attracts best. Alloy admixtures lower magnetic properties and holding force.
  • Surface condition – smooth surfaces guarantee perfect abutment, which increases force. Uneven metal weaken the grip.
  • Temperature – heating the magnet results in weakening of induction. It is worth remembering the maximum operating temperature for a given model.

Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, whereas under attempts to slide the magnet the load capacity is reduced by as much as 75%. Additionally, even a small distance between the magnet and the plate reduces the holding force.

Warnings
Dust explosion hazard

Powder created during grinding of magnets is combustible. Do not drill into magnets without proper cooling and knowledge.

Shattering risk

Despite the nickel coating, neodymium is brittle and not impact-resistant. Do not hit, as the magnet may crumble into sharp, dangerous pieces.

No play value

These products are not intended for children. Accidental ingestion of several magnets can lead to them attracting across intestines, which poses a direct threat to life and requires urgent medical intervention.

Nickel coating and allergies

It is widely known that the nickel plating (standard magnet coating) is a strong allergen. If your skin reacts to metals, refrain from touching magnets with bare hands and select coated magnets.

Serious injuries

Mind your fingers. Two large magnets will join instantly with a force of massive weight, destroying anything in their path. Be careful!

Pacemakers

Life threat: Strong magnets can turn off pacemakers and defibrillators. Stay away if you have electronic implants.

Cards and drives

Avoid bringing magnets near a wallet, laptop, or TV. The magnetism can irreversibly ruin these devices and wipe information from cards.

Respect the power

Use magnets consciously. Their powerful strength can surprise even professionals. Stay alert and do not underestimate their force.

Heat warning

Regular neodymium magnets (N-type) lose power when the temperature goes above 80°C. Damage is permanent.

GPS Danger

Note: neodymium magnets produce a field that interferes with precision electronics. Keep a safe distance from your phone, tablet, and navigation systems.

Security! More info about risks in the article: Magnet Safety Guide.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98