MPL 15x10x2 / N38 - lamellar magnet
lamellar magnet
Catalog no 020388
GTIN/EAN: 5906301811879
length
15 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
2.25 g
Magnetization Direction
↑ axial
Load capacity
1.57 kg / 15.45 N
Magnetic Induction
180.53 mT / 1805 Gs
Coating
[NiCuNi] Nickel
1.316 ZŁ with VAT / pcs + price for transport
1.070 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 888 99 98 98
alternatively drop us a message through
form
the contact page.
Strength as well as structure of neodymium magnets can be analyzed on our
force calculator.
Orders submitted before 14:00 will be dispatched today!
Detailed specification - MPL 15x10x2 / N38 - lamellar magnet
Specification / characteristics - MPL 15x10x2 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020388 |
| GTIN/EAN | 5906301811879 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 15 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 2.25 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 1.57 kg / 15.45 N |
| Magnetic Induction ~ ? | 180.53 mT / 1805 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the assembly - data
Presented values represent the direct effect of a physical simulation. Values were calculated on algorithms for the class Nd2Fe14B. Actual conditions might slightly differ from theoretical values. Treat these data as a reference point during assembly planning.
Table 1: Static force (pull vs gap) - interaction chart
MPL 15x10x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
1805 Gs
180.5 mT
|
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
low risk |
| 1 mm |
1628 Gs
162.8 mT
|
1.28 kg / 2.82 lbs
1278.3 g / 12.5 N
|
low risk |
| 2 mm |
1394 Gs
139.4 mT
|
0.94 kg / 2.06 lbs
936.3 g / 9.2 N
|
low risk |
| 3 mm |
1152 Gs
115.2 mT
|
0.64 kg / 1.41 lbs
639.9 g / 6.3 N
|
low risk |
| 5 mm |
751 Gs
75.1 mT
|
0.27 kg / 0.60 lbs
271.5 g / 2.7 N
|
low risk |
| 10 mm |
262 Gs
26.2 mT
|
0.03 kg / 0.07 lbs
33.1 g / 0.3 N
|
low risk |
| 15 mm |
110 Gs
11.0 mT
|
0.01 kg / 0.01 lbs
5.8 g / 0.1 N
|
low risk |
| 20 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
|
low risk |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
low risk |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
Table 2: Shear capacity (wall)
MPL 15x10x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.31 kg / 0.69 lbs
314.0 g / 3.1 N
|
| 1 mm | Stal (~0.2) |
0.26 kg / 0.56 lbs
256.0 g / 2.5 N
|
| 2 mm | Stal (~0.2) |
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| 3 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
128.0 g / 1.3 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MPL 15x10x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.47 kg / 1.04 lbs
471.0 g / 4.6 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.31 kg / 0.69 lbs
314.0 g / 3.1 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.16 kg / 0.35 lbs
157.0 g / 1.5 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.79 kg / 1.73 lbs
785.0 g / 7.7 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MPL 15x10x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.16 kg / 0.35 lbs
157.0 g / 1.5 N
|
| 1 mm |
|
0.39 kg / 0.87 lbs
392.5 g / 3.9 N
|
| 2 mm |
|
0.79 kg / 1.73 lbs
785.0 g / 7.7 N
|
| 3 mm |
|
1.18 kg / 2.60 lbs
1177.5 g / 11.6 N
|
| 5 mm |
|
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
| 10 mm |
|
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
| 11 mm |
|
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
| 12 mm |
|
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
Table 5: Thermal resistance (stability) - resistance threshold
MPL 15x10x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
OK |
| 40 °C | -2.2% |
1.54 kg / 3.39 lbs
1535.5 g / 15.1 N
|
OK |
| 60 °C | -4.4% |
1.50 kg / 3.31 lbs
1500.9 g / 14.7 N
|
|
| 80 °C | -6.6% |
1.47 kg / 3.23 lbs
1466.4 g / 14.4 N
|
|
| 100 °C | -28.8% |
1.12 kg / 2.46 lbs
1117.8 g / 11.0 N
|
Table 6: Two magnets (attraction) - field range
MPL 15x10x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.01 kg / 6.64 lbs
3 196 Gs
|
0.45 kg / 1.00 lbs
452 g / 4.4 N
|
N/A |
| 1 mm |
2.76 kg / 6.09 lbs
3 456 Gs
|
0.41 kg / 0.91 lbs
414 g / 4.1 N
|
2.49 kg / 5.48 lbs
~0 Gs
|
| 2 mm |
2.45 kg / 5.41 lbs
3 257 Gs
|
0.37 kg / 0.81 lbs
368 g / 3.6 N
|
2.21 kg / 4.87 lbs
~0 Gs
|
| 3 mm |
2.12 kg / 4.68 lbs
3 029 Gs
|
0.32 kg / 0.70 lbs
318 g / 3.1 N
|
1.91 kg / 4.21 lbs
~0 Gs
|
| 5 mm |
1.49 kg / 3.30 lbs
2 543 Gs
|
0.22 kg / 0.49 lbs
224 g / 2.2 N
|
1.35 kg / 2.97 lbs
~0 Gs
|
| 10 mm |
0.52 kg / 1.15 lbs
1 501 Gs
|
0.08 kg / 0.17 lbs
78 g / 0.8 N
|
0.47 kg / 1.03 lbs
~0 Gs
|
| 20 mm |
0.06 kg / 0.14 lbs
524 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
60 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
37 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - warnings
MPL 15x10x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 3.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 2.5 cm |
| Car key | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MPL 15x10x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
26.99 km/h
(7.50 m/s)
|
0.06 J | |
| 30 mm |
46.15 km/h
(12.82 m/s)
|
0.18 J | |
| 50 mm |
59.57 km/h
(16.55 m/s)
|
0.31 J | |
| 100 mm |
84.24 km/h
(23.40 m/s)
|
0.62 J |
Table 9: Anti-corrosion coating durability
MPL 15x10x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MPL 15x10x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 3 194 Mx | 31.9 µWb |
| Pc Coefficient | 0.22 | Low (Flat) |
Table 11: Submerged application
MPL 15x10x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 1.57 kg | Standard |
| Water (riverbed) |
1.80 kg
(+0.23 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Note: On a vertical surface, the magnet holds just approx. 20-30% of its perpendicular strength.
2. Steel saturation
*Thin steel (e.g. 0.5mm PC case) significantly reduces the holding force.
3. Heat tolerance
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.22
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See more offers
Strengths and weaknesses of neodymium magnets.
Strengths
- Their magnetic field remains stable, and after approximately 10 years it decreases only by ~1% (according to research),
- They show high resistance to demagnetization induced by external field influence,
- Thanks to the elegant finish, the surface of nickel, gold-plated, or silver-plated gives an clean appearance,
- Neodymium magnets achieve maximum magnetic induction on a small surface, which allows for strong attraction,
- Thanks to resistance to high temperature, they can operate (depending on the form) even at temperatures up to 230°C and higher...
- Due to the potential of free forming and customization to unique solutions, NdFeB magnets can be modeled in a broad palette of forms and dimensions, which makes them more universal,
- Significant place in modern industrial fields – they are commonly used in hard drives, electric drive systems, medical equipment, and multitasking production systems.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in compact dimensions, which allows their use in compact constructions
Disadvantages
- At very strong impacts they can break, therefore we advise placing them in special holders. A metal housing provides additional protection against damage and increases the magnet's durability.
- Neodymium magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent weakening of power (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- They rust in a humid environment. For use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
- We suggest casing - magnetic holder, due to difficulties in producing threads inside the magnet and complicated shapes.
- Possible danger to health – tiny shards of magnets pose a threat, in case of ingestion, which gains importance in the aspect of protecting the youngest. Furthermore, small components of these devices are able to disrupt the diagnostic process medical after entering the body.
- High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which hinders application in large quantities
Pull force analysis
Breakaway strength of the magnet in ideal conditions – what affects it?
- using a sheet made of high-permeability steel, acting as a circuit closing element
- with a cross-section of at least 10 mm
- with a surface cleaned and smooth
- without the slightest air gap between the magnet and steel
- for force applied at a right angle (in the magnet axis)
- in temp. approx. 20°C
Key elements affecting lifting force
- Distance (between the magnet and the metal), because even a tiny clearance (e.g. 0.5 mm) results in a decrease in lifting capacity by up to 50% (this also applies to varnish, rust or debris).
- Force direction – remember that the magnet holds strongest perpendicularly. Under sliding down, the capacity drops significantly, often to levels of 20-30% of the maximum value.
- Element thickness – to utilize 100% power, the steel must be adequately massive. Paper-thin metal restricts the lifting capacity (the magnet "punches through" it).
- Metal type – different alloys reacts the same. High carbon content worsen the interaction with the magnet.
- Smoothness – full contact is obtained only on polished steel. Rough texture reduce the real contact area, reducing force.
- Thermal factor – high temperature weakens magnetic field. Exceeding the limit temperature can permanently damage the magnet.
Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, whereas under shearing force the holding force is lower. Moreover, even a slight gap between the magnet’s surface and the plate lowers the holding force.
Precautions when working with NdFeB magnets
Shattering risk
Neodymium magnets are ceramic materials, meaning they are very brittle. Collision of two magnets leads to them cracking into small pieces.
Do not underestimate power
Before use, read the rules. Uncontrolled attraction can break the magnet or injure your hand. Be predictive.
No play value
Strictly keep magnets away from children. Choking hazard is significant, and the consequences of magnets connecting inside the body are fatal.
Impact on smartphones
GPS units and mobile phones are extremely sensitive to magnetic fields. Close proximity with a powerful NdFeB magnet can permanently damage the internal compass in your phone.
Pinching danger
Big blocks can break fingers instantly. Never put your hand between two attracting surfaces.
Threat to electronics
Avoid bringing magnets near a wallet, computer, or screen. The magnetic field can destroy these devices and wipe information from cards.
Thermal limits
Keep cool. NdFeB magnets are susceptible to temperature. If you require operation above 80°C, ask us about HT versions (H, SH, UH).
Medical implants
Medical warning: Strong magnets can deactivate heart devices and defibrillators. Do not approach if you have electronic implants.
Flammability
Drilling and cutting of neodymium magnets carries a risk of fire hazard. Neodymium dust oxidizes rapidly with oxygen and is hard to extinguish.
Allergic reactions
Some people have a hypersensitivity to nickel, which is the typical protective layer for neodymium magnets. Prolonged contact might lead to dermatitis. We suggest use protective gloves.
