MP 24x16x2 / N38 - ring magnet
ring magnet
Catalog no 030495
GTIN: 5906301812364
Diameter [±0,1 mm]
24 mm
internal diameter Ø [±0,1 mm]
16 mm
Height [±0,1 mm]
2 mm
Weight
3.77 g
Magnetization Direction
↑ axial
Load capacity
1.77 kg / 17.36 N
Magnetic Induction
48.42 mT
Coating
[NiCuNi] nickel
3.69 ZŁ with VAT / pcs + price for transport
3.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Call us now
+48 22 499 98 98
if you prefer contact us through
contact form
our website.
Force as well as shape of a neodymium magnet can be analyzed using our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
MP 24x16x2 / N38 - ring magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (based on calculations),
- They show exceptional resistance to demagnetization from outside magnetic sources,
- The use of a mirror-like nickel surface provides a refined finish,
- The outer field strength of the magnet shows remarkable magnetic properties,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which increases their functional possibilities,
- Wide application in cutting-edge sectors – they serve a purpose in hard drives, electric drives, medical equipment as well as technologically developed systems,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of magnetic elements:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to physical collisions, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall strength,
- They lose power at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
- Safety concern related to magnet particles may arise, if ingested accidentally, which is important in the context of child safety. It should also be noted that minuscule fragments from these devices can complicate medical imaging once in the system,
- In cases of tight budgets, neodymium magnet cost may not be economically viable,
Best holding force of the magnet in ideal parameters – what it depends on?
The given holding capacity of the magnet corresponds to the highest holding force, determined under optimal conditions, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- with a thickness of minimum 10 mm
- with a refined outer layer
- in conditions of no clearance
- under perpendicular detachment force
- in normal thermal conditions
What influences lifting capacity in practice
Practical lifting force is determined by elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, however under attempts to slide the magnet the load capacity is reduced by as much as 75%. In addition, even a slight gap {between} the magnet and the plate decreases the lifting capacity.
Precautions
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Neodymium magnetic are fragile and can easily crack as well as shatter.
Neodymium magnets are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Do not bring neodymium magnets close to GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.
Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to insert fingers between magnets or in their path when attract. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.
Neodymium magnets should not be around youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Warning!
To illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are very strong neodymium magnets?.