MP 62x42x25 / N38 - ring magnet
ring magnet
Catalog no 030205
GTIN: 5906301812227
Diameter [±0,1 mm]
62 mm
internal diameter Ø [±0,1 mm]
42 mm
Height [±0,1 mm]
25 mm
Weight
117.81 g
Magnetization Direction
↑ axial
Load capacity
59.85 kg / 586.93 N
Magnetic Induction
85.46 mT
Coating
[NiCuNi] nickel
165.00 ZŁ with VAT / pcs + price for transport
134.15 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure which magnet to buy?
Call us
+48 888 99 98 98
otherwise send us a note through
inquiry form
the contact section.
Lifting power and appearance of a magnet can be reviewed on our
force calculator.
Same-day shipping for orders placed before 14:00.
MP 62x42x25 / N38 - ring magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their tremendous magnetic power, neodymium magnets offer the following advantages:
- They do not lose their even during around ten years – the loss of lifting capacity is only ~1% (according to tests),
- They show strong resistance to demagnetization from outside magnetic sources,
- By applying a shiny layer of gold, the element gains a modern look,
- They possess significant magnetic force measurable at the magnet’s surface,
- Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their functional possibilities,
- Significant impact in cutting-edge sectors – they are used in computer drives, electric motors, diagnostic apparatus as well as sophisticated instruments,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They can break when subjected to a powerful impact. If the magnets are exposed to shocks, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from damage while also enhances its overall strength,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, it's best to use waterproof types made of non-metallic composites,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
- Potential hazard from tiny pieces may arise, when consumed by mistake, which is important in the health of young users. Furthermore, minuscule fragments from these magnets may disrupt scanning once in the system,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Breakaway strength of the magnet in ideal conditions – what it depends on?
The given holding capacity of the magnet represents the highest holding force, determined under optimal conditions, specifically:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a smooth surface
- in conditions of no clearance
- in a perpendicular direction of force
- in normal thermal conditions
Practical aspects of lifting capacity – factors
The lifting capacity of a magnet is determined by in practice the following factors, from primary to secondary:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of suitable thickness, under a perpendicular pulling force, in contrast under shearing force the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate lowers the holding force.
Safety Precautions
Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to insert fingers between magnets or in their path when they attract. Magnets, depending on their size, can even cut off a finger or there can be a significant pressure or a fracture.
Magnets made of neodymium are particularly fragile, resulting in their breakage.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be in the vicinity youngest children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Pay attention!
In order to illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are strong neodymium magnets?.