MPL 50x20x10 / N38 - lamellar magnet
lamellar magnet
Catalog no 020165
GTIN/EAN: 5906301811718
length
50 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
75 g
Magnetization Direction
↑ axial
Load capacity
29.99 kg / 294.15 N
Magnetic Induction
337.18 mT / 3372 Gs
Coating
[NiCuNi] Nickel
43.05 ZŁ with VAT / pcs + price for transport
35.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 888 99 98 98
or let us know through
form
through our site.
Weight and form of a neodymium magnet can be analyzed using our
magnetic calculator.
Order by 14:00 and we’ll ship today!
Technical data - MPL 50x20x10 / N38 - lamellar magnet
Specification / characteristics - MPL 50x20x10 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020165 |
| GTIN/EAN | 5906301811718 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 50 mm [±0,1 mm] |
| Width | 20 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 75 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 29.99 kg / 294.15 N |
| Magnetic Induction ~ ? | 337.18 mT / 3372 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical simulation of the product - data
Presented data represent the result of a mathematical simulation. Values rely on models for the material Nd2Fe14B. Operational conditions may deviate from the simulation results. Please consider these data as a reference point during assembly planning.
Table 1: Static pull force (force vs gap) - characteristics
MPL 50x20x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3371 Gs
337.1 mT
|
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
dangerous! |
| 1 mm |
3158 Gs
315.8 mT
|
26.32 kg / 58.03 lbs
26323.3 g / 258.2 N
|
dangerous! |
| 2 mm |
2932 Gs
293.2 mT
|
22.69 kg / 50.02 lbs
22687.6 g / 222.6 N
|
dangerous! |
| 3 mm |
2703 Gs
270.3 mT
|
19.29 kg / 42.52 lbs
19286.7 g / 189.2 N
|
dangerous! |
| 5 mm |
2266 Gs
226.6 mT
|
13.55 kg / 29.86 lbs
13546.3 g / 132.9 N
|
dangerous! |
| 10 mm |
1419 Gs
141.9 mT
|
5.31 kg / 11.71 lbs
5313.0 g / 52.1 N
|
warning |
| 15 mm |
908 Gs
90.8 mT
|
2.17 kg / 4.79 lbs
2174.5 g / 21.3 N
|
warning |
| 20 mm |
603 Gs
60.3 mT
|
0.96 kg / 2.12 lbs
961.0 g / 9.4 N
|
safe |
| 30 mm |
296 Gs
29.6 mT
|
0.23 kg / 0.51 lbs
231.0 g / 2.3 N
|
safe |
| 50 mm |
97 Gs
9.7 mT
|
0.02 kg / 0.05 lbs
24.8 g / 0.2 N
|
safe |
Table 2: Shear load (vertical surface)
MPL 50x20x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
6.00 kg / 13.22 lbs
5998.0 g / 58.8 N
|
| 1 mm | Stal (~0.2) |
5.26 kg / 11.61 lbs
5264.0 g / 51.6 N
|
| 2 mm | Stal (~0.2) |
4.54 kg / 10.00 lbs
4538.0 g / 44.5 N
|
| 3 mm | Stal (~0.2) |
3.86 kg / 8.51 lbs
3858.0 g / 37.8 N
|
| 5 mm | Stal (~0.2) |
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 10 mm | Stal (~0.2) |
1.06 kg / 2.34 lbs
1062.0 g / 10.4 N
|
| 15 mm | Stal (~0.2) |
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| 20 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
192.0 g / 1.9 N
|
| 30 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MPL 50x20x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
9.00 kg / 19.83 lbs
8997.0 g / 88.3 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
6.00 kg / 13.22 lbs
5998.0 g / 58.8 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
3.00 kg / 6.61 lbs
2999.0 g / 29.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
15.00 kg / 33.06 lbs
14995.0 g / 147.1 N
|
Table 4: Steel thickness (saturation) - sheet metal selection
MPL 50x20x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.50 kg / 3.31 lbs
1499.5 g / 14.7 N
|
| 1 mm |
|
3.75 kg / 8.26 lbs
3748.8 g / 36.8 N
|
| 2 mm |
|
7.50 kg / 16.53 lbs
7497.5 g / 73.6 N
|
| 3 mm |
|
11.25 kg / 24.79 lbs
11246.3 g / 110.3 N
|
| 5 mm |
|
18.74 kg / 41.32 lbs
18743.8 g / 183.9 N
|
| 10 mm |
|
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
| 11 mm |
|
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
| 12 mm |
|
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
Table 5: Working in heat (material behavior) - thermal limit
MPL 50x20x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
OK |
| 40 °C | -2.2% |
29.33 kg / 64.66 lbs
29330.2 g / 287.7 N
|
OK |
| 60 °C | -4.4% |
28.67 kg / 63.21 lbs
28670.4 g / 281.3 N
|
|
| 80 °C | -6.6% |
28.01 kg / 61.75 lbs
28010.7 g / 274.8 N
|
|
| 100 °C | -28.8% |
21.35 kg / 47.07 lbs
21352.9 g / 209.5 N
|
Table 6: Two magnets (attraction) - field range
MPL 50x20x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
70.06 kg / 154.45 lbs
4 789 Gs
|
10.51 kg / 23.17 lbs
10509 g / 103.1 N
|
N/A |
| 1 mm |
65.83 kg / 145.13 lbs
6 535 Gs
|
9.87 kg / 21.77 lbs
9874 g / 96.9 N
|
59.25 kg / 130.61 lbs
~0 Gs
|
| 2 mm |
61.49 kg / 135.57 lbs
6 316 Gs
|
9.22 kg / 20.34 lbs
9224 g / 90.5 N
|
55.34 kg / 122.01 lbs
~0 Gs
|
| 3 mm |
57.20 kg / 126.10 lbs
6 092 Gs
|
8.58 kg / 18.92 lbs
8580 g / 84.2 N
|
51.48 kg / 113.49 lbs
~0 Gs
|
| 5 mm |
48.94 kg / 107.89 lbs
5 635 Gs
|
7.34 kg / 16.18 lbs
7341 g / 72.0 N
|
44.05 kg / 97.10 lbs
~0 Gs
|
| 10 mm |
31.64 kg / 69.76 lbs
4 531 Gs
|
4.75 kg / 10.46 lbs
4747 g / 46.6 N
|
28.48 kg / 62.79 lbs
~0 Gs
|
| 20 mm |
12.41 kg / 27.36 lbs
2 838 Gs
|
1.86 kg / 4.10 lbs
1862 g / 18.3 N
|
11.17 kg / 24.63 lbs
~0 Gs
|
| 50 mm |
1.07 kg / 2.35 lbs
832 Gs
|
0.16 kg / 0.35 lbs
160 g / 1.6 N
|
0.96 kg / 2.12 lbs
~0 Gs
|
| 60 mm |
0.54 kg / 1.19 lbs
592 Gs
|
0.08 kg / 0.18 lbs
81 g / 0.8 N
|
0.49 kg / 1.07 lbs
~0 Gs
|
| 70 mm |
0.29 kg / 0.64 lbs
433 Gs
|
0.04 kg / 0.10 lbs
43 g / 0.4 N
|
0.26 kg / 0.57 lbs
~0 Gs
|
| 80 mm |
0.16 kg / 0.36 lbs
324 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.15 kg / 0.32 lbs
~0 Gs
|
| 90 mm |
0.10 kg / 0.21 lbs
248 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.09 kg / 0.19 lbs
~0 Gs
|
| 100 mm |
0.06 kg / 0.13 lbs
194 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
Table 7: Protective zones (electronics) - precautionary measures
MPL 50x20x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 15.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 12.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 9.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 7.5 cm |
| Remote | 50 Gs (5.0 mT) | 7.0 cm |
| Payment card | 400 Gs (40.0 mT) | 3.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 2.5 cm |
Table 8: Collisions (kinetic energy) - collision effects
MPL 50x20x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
22.29 km/h
(6.19 m/s)
|
1.44 J | |
| 30 mm |
35.10 km/h
(9.75 m/s)
|
3.56 J | |
| 50 mm |
45.12 km/h
(12.53 m/s)
|
5.89 J | |
| 100 mm |
63.77 km/h
(17.72 m/s)
|
11.77 J |
Table 9: Corrosion resistance
MPL 50x20x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MPL 50x20x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 32 980 Mx | 329.8 µWb |
| Pc Coefficient | 0.38 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 50x20x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 29.99 kg | Standard |
| Water (riverbed) |
34.34 kg
(+4.35 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical surface, the magnet holds only ~20% of its max power.
2. Plate thickness effect
*Thin steel (e.g. 0.5mm PC case) severely reduces the holding force.
3. Thermal stability
*For N38 material, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.38
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other proposals
Advantages and disadvantages of Nd2Fe14B magnets.
Benefits
- They virtually do not lose strength, because even after ten years the performance loss is only ~1% (in laboratory conditions),
- They are resistant to demagnetization induced by external field influence,
- By applying a reflective layer of nickel, the element presents an aesthetic look,
- Neodymium magnets achieve maximum magnetic induction on a contact point, which increases force concentration,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
- Possibility of detailed creating and optimizing to defined conditions,
- Fundamental importance in modern technologies – they find application in hard drives, brushless drives, medical devices, and industrial machines.
- Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications
Limitations
- They are fragile upon too strong impacts. To avoid cracks, it is worth securing magnets in special housings. Such protection not only protects the magnet but also increases its resistance to damage
- When exposed to high temperature, neodymium magnets experience a drop in strength. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- They oxidize in a humid environment. For use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
- Limited ability of producing threads in the magnet and complex forms - preferred is cover - magnet mounting.
- Potential hazard to health – tiny shards of magnets are risky, when accidentally swallowed, which is particularly important in the context of child health protection. Additionally, small elements of these magnets can be problematic in diagnostics medical after entering the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Holding force characteristics
Maximum magnetic pulling force – what affects it?
- on a base made of structural steel, perfectly concentrating the magnetic field
- whose transverse dimension reaches at least 10 mm
- with a surface free of scratches
- without any air gap between the magnet and steel
- under perpendicular force vector (90-degree angle)
- at standard ambient temperature
Determinants of lifting force in real conditions
- Distance – the presence of foreign body (rust, dirt, gap) acts as an insulator, which reduces power rapidly (even by 50% at 0.5 mm).
- Loading method – declared lifting capacity refers to pulling vertically. When applying parallel force, the magnet exhibits significantly lower power (typically approx. 20-30% of maximum force).
- Substrate thickness – to utilize 100% power, the steel must be sufficiently thick. Thin sheet restricts the attraction force (the magnet "punches through" it).
- Material composition – different alloys attracts identically. High carbon content worsen the attraction effect.
- Plate texture – ground elements guarantee perfect abutment, which improves force. Uneven metal reduce efficiency.
- Temperature influence – hot environment reduces pulling force. Exceeding the limit temperature can permanently demagnetize the magnet.
Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the load capacity is reduced by as much as fivefold. In addition, even a small distance between the magnet and the plate lowers the load capacity.
Safety rules for work with NdFeB magnets
Magnetic media
Intense magnetic fields can corrupt files on credit cards, hard drives, and other magnetic media. Keep a distance of min. 10 cm.
Implant safety
For implant holders: Strong magnetic fields disrupt electronics. Maintain at least 30 cm distance or ask another person to work with the magnets.
Fire warning
Powder produced during cutting of magnets is self-igniting. Avoid drilling into magnets without proper cooling and knowledge.
Pinching danger
Danger of trauma: The attraction force is so great that it can cause blood blisters, crushing, and even bone fractures. Protective gloves are recommended.
Do not underestimate power
Exercise caution. Rare earth magnets attract from a long distance and snap with huge force, often quicker than you can react.
This is not a toy
Product intended for adults. Tiny parts can be swallowed, leading to severe trauma. Store away from children and animals.
Heat sensitivity
Keep cool. Neodymium magnets are susceptible to temperature. If you need operation above 80°C, ask us about special high-temperature series (H, SH, UH).
Sensitization to coating
A percentage of the population suffer from a hypersensitivity to nickel, which is the typical protective layer for neodymium magnets. Prolonged contact can result in skin redness. We recommend use protective gloves.
Protective goggles
Beware of splinters. Magnets can fracture upon violent connection, launching sharp fragments into the air. Eye protection is mandatory.
GPS Danger
GPS units and mobile phones are extremely sensitive to magnetic fields. Direct contact with a strong magnet can decalibrate the sensors in your phone.
