MPL 50x20x10 / N38 - neodymium magnet
lamellar magnet
catalog number 020165
GTIN: 5906301811718
length
50
mm [±0,1 mm]
width
20
mm [±0,1 mm]
height
10
mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
24.97 kg / 244.87 N
magnetic induction ~
337.18 mT / 3,372 Gs
max. temperature
≤ 80
°C
catalog number 020165
GTIN: 5906301811718
length
50 mm [±0,1 mm]
width
20 mm [±0,1 mm]
height
10 mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
24.97 kg / 244.87 N
magnetic induction ~
337.18 mT / 3,372 Gs
max. temperature
≤ 80 °C
40.00 ZŁ gross price (including VAT) / pcs +
32.52 ZŁ net price + 23% VAT / pcs
bulk discounts:
need more quantity?Want a better price?
Give us a call tel: +48 888 99 98 98 or get in touch through form on our website. You can check the mass as well as the shape of neodymium magnets in our force calculator magnetic calculator
Orders placed by 2:00 PM will be shipped on the same business day.
Specification: lamellar magnet 50x20x10 / N38 ↑ axial
Magnetic properties of the material N38
Physical properties of sintered neodymium magnets Nd2Fe14B
Due to their strength, flat magnets are regularly applied in devices that need very strong attraction.
Typical temperature resistance of these magnets is 80°C, but depending on the dimensions, this value grows.
Moreover, flat magnets usually have special coatings applied to their surfaces, such as nickel, gold, or chrome, for enhancing their durability.
The magnet with the designation MPL 50x20x10 / N38 i.e. a magnetic strength 24.97 kg with a weight of only 75.00 grams, making it the excellent choice for projects needing a flat magnet.
Contact surface: Due to their flat shape, flat magnets guarantee a larger contact surface with adjacent parts, which can be beneficial in applications requiring a stronger magnetic connection.
Technology applications: These magnets are often used in different devices, such as sensors, stepper motors, or speakers, where the thin and wide shape is necessary for their operation.
Mounting: Their flat shape simplifies mounting, particularly when it is necessary to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows creators a lot of flexibility in arranging them in structures, which can be more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet may offer better stability, reducing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet depends on the given use and requirements. In some cases, other shapes, such as cylindrical or spherical, are a better choice.
Magnets have two poles: north (N) and south (S), which attract each other when they are different. Similar poles, e.g. two north poles, repel each other.
Due to these properties, magnets are often used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them perfect for applications requiring powerful magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the material it is made of.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards and even electronic devices sensitive to magnetic fields. For this reason, it is important to exercise caution when using magnets.
Find suggested articles
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to immense power, neodymium magnets have the following advantages:
- They do not lose their power (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
- They are highly resistant to demagnetization by external magnetic sources,
- In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
- They exhibit extremely high magnetic induction on the surface of the magnet,
- By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
- Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
- Significant importance in the industry of new technologies – are utilized in hard drives, electric motors, medical devices and other modern machines.
Disadvantages of neodymium magnets:
- They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
- High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
- Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
- The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
- Health risk associated with microscopic parts of magnets can be dangerous, if swallowed, which becomes significant in the context of children's health. It's also worth noting that tiny parts of these magnets can be problematic in medical diagnosis after entering the body.
Be Cautious with Neodymium Magnets
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets will bounce and also contact together within a distance of several to around 10 cm from each other.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnetic are known for their fragility, which can cause them to crumble.
Magnets made of neodymium are highly fragile, and by joining them in an uncontrolled manner, they will break. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.