MPL 40x15x6 / N38 - lamellar magnet
lamellar magnet
Catalog no 020155
GTIN/EAN: 5906301811619
length
40 mm [±0,1 mm]
Width
15 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
27 g
Magnetization Direction
↑ axial
Load capacity
14.21 kg / 139.45 N
Magnetic Induction
286.36 mT / 2864 Gs
Coating
[NiCuNi] Nickel
18.45 ZŁ with VAT / pcs + price for transport
15.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
or drop us a message through
contact form
the contact form page.
Lifting power and form of a magnet can be estimated on our
power calculator.
Orders placed before 14:00 will be shipped the same business day.
Physical properties - MPL 40x15x6 / N38 - lamellar magnet
Specification / characteristics - MPL 40x15x6 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020155 |
| GTIN/EAN | 5906301811619 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 40 mm [±0,1 mm] |
| Width | 15 mm [±0,1 mm] |
| Height | 6 mm [±0,1 mm] |
| Weight | 27 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 14.21 kg / 139.45 N |
| Magnetic Induction ~ ? | 286.36 mT / 2864 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the product - data
The following information are the direct effect of a mathematical analysis. Results were calculated on models for the material Nd2Fe14B. Actual conditions may differ. Treat these calculations as a supplementary guide during assembly planning.
Table 1: Static pull force (force vs gap) - power drop
MPL 40x15x6 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2863 Gs
286.3 mT
|
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
critical level |
| 1 mm |
2635 Gs
263.5 mT
|
12.04 kg / 26.55 lbs
12041.8 g / 118.1 N
|
critical level |
| 2 mm |
2385 Gs
238.5 mT
|
9.86 kg / 21.74 lbs
9859.1 g / 96.7 N
|
medium risk |
| 3 mm |
2132 Gs
213.2 mT
|
7.88 kg / 17.37 lbs
7880.1 g / 77.3 N
|
medium risk |
| 5 mm |
1670 Gs
167.0 mT
|
4.84 kg / 10.66 lbs
4837.1 g / 47.5 N
|
medium risk |
| 10 mm |
903 Gs
90.3 mT
|
1.41 kg / 3.11 lbs
1412.2 g / 13.9 N
|
low risk |
| 15 mm |
520 Gs
52.0 mT
|
0.47 kg / 1.03 lbs
469.2 g / 4.6 N
|
low risk |
| 20 mm |
320 Gs
32.0 mT
|
0.18 kg / 0.39 lbs
177.7 g / 1.7 N
|
low risk |
| 30 mm |
141 Gs
14.1 mT
|
0.03 kg / 0.08 lbs
34.5 g / 0.3 N
|
low risk |
| 50 mm |
41 Gs
4.1 mT
|
0.00 kg / 0.01 lbs
3.0 g / 0.0 N
|
low risk |
Table 2: Slippage force (vertical surface)
MPL 40x15x6 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.84 kg / 6.27 lbs
2842.0 g / 27.9 N
|
| 1 mm | Stal (~0.2) |
2.41 kg / 5.31 lbs
2408.0 g / 23.6 N
|
| 2 mm | Stal (~0.2) |
1.97 kg / 4.35 lbs
1972.0 g / 19.3 N
|
| 3 mm | Stal (~0.2) |
1.58 kg / 3.47 lbs
1576.0 g / 15.5 N
|
| 5 mm | Stal (~0.2) |
0.97 kg / 2.13 lbs
968.0 g / 9.5 N
|
| 10 mm | Stal (~0.2) |
0.28 kg / 0.62 lbs
282.0 g / 2.8 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.21 lbs
94.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MPL 40x15x6 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
4.26 kg / 9.40 lbs
4263.0 g / 41.8 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.84 kg / 6.27 lbs
2842.0 g / 27.9 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
1.42 kg / 3.13 lbs
1421.0 g / 13.9 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
7.11 kg / 15.66 lbs
7105.0 g / 69.7 N
|
Table 4: Steel thickness (substrate influence) - sheet metal selection
MPL 40x15x6 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.71 kg / 1.57 lbs
710.5 g / 7.0 N
|
| 1 mm |
|
1.78 kg / 3.92 lbs
1776.3 g / 17.4 N
|
| 2 mm |
|
3.55 kg / 7.83 lbs
3552.5 g / 34.9 N
|
| 3 mm |
|
5.33 kg / 11.75 lbs
5328.8 g / 52.3 N
|
| 5 mm |
|
8.88 kg / 19.58 lbs
8881.3 g / 87.1 N
|
| 10 mm |
|
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
| 11 mm |
|
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
| 12 mm |
|
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
Table 5: Thermal stability (material behavior) - thermal limit
MPL 40x15x6 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
OK |
| 40 °C | -2.2% |
13.90 kg / 30.64 lbs
13897.4 g / 136.3 N
|
OK |
| 60 °C | -4.4% |
13.58 kg / 29.95 lbs
13584.8 g / 133.3 N
|
|
| 80 °C | -6.6% |
13.27 kg / 29.26 lbs
13272.1 g / 130.2 N
|
|
| 100 °C | -28.8% |
10.12 kg / 22.31 lbs
10117.5 g / 99.3 N
|
Table 6: Magnet-Magnet interaction (attraction) - field range
MPL 40x15x6 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
30.32 kg / 66.84 lbs
4 334 Gs
|
4.55 kg / 10.03 lbs
4547 g / 44.6 N
|
N/A |
| 1 mm |
28.06 kg / 61.86 lbs
5 508 Gs
|
4.21 kg / 9.28 lbs
4209 g / 41.3 N
|
25.25 kg / 55.67 lbs
~0 Gs
|
| 2 mm |
25.69 kg / 56.64 lbs
5 271 Gs
|
3.85 kg / 8.50 lbs
3854 g / 37.8 N
|
23.12 kg / 50.97 lbs
~0 Gs
|
| 3 mm |
23.33 kg / 51.43 lbs
5 023 Gs
|
3.50 kg / 7.71 lbs
3499 g / 34.3 N
|
21.00 kg / 46.29 lbs
~0 Gs
|
| 5 mm |
18.85 kg / 41.56 lbs
4 515 Gs
|
2.83 kg / 6.23 lbs
2828 g / 27.7 N
|
16.97 kg / 37.40 lbs
~0 Gs
|
| 10 mm |
10.32 kg / 22.75 lbs
3 341 Gs
|
1.55 kg / 3.41 lbs
1548 g / 15.2 N
|
9.29 kg / 20.48 lbs
~0 Gs
|
| 20 mm |
3.01 kg / 6.64 lbs
1 805 Gs
|
0.45 kg / 1.00 lbs
452 g / 4.4 N
|
2.71 kg / 5.98 lbs
~0 Gs
|
| 50 mm |
0.16 kg / 0.35 lbs
416 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.14 kg / 0.32 lbs
~0 Gs
|
| 60 mm |
0.07 kg / 0.16 lbs
282 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.15 lbs
~0 Gs
|
| 70 mm |
0.04 kg / 0.08 lbs
199 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.04 lbs
144 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
108 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.01 lbs
83 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (implants) - precautionary measures
MPL 40x15x6 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 11.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 8.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 7.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 5.5 cm |
| Remote | 50 Gs (5.0 mT) | 5.0 cm |
| Payment card | 400 Gs (40.0 mT) | 2.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Collisions (cracking risk) - warning
MPL 40x15x6 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
24.53 km/h
(6.81 m/s)
|
0.63 J | |
| 30 mm |
40.13 km/h
(11.15 m/s)
|
1.68 J | |
| 50 mm |
51.74 km/h
(14.37 m/s)
|
2.79 J | |
| 100 mm |
73.16 km/h
(20.32 m/s)
|
5.58 J |
Table 9: Surface protection spec
MPL 40x15x6 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MPL 40x15x6 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 16 905 Mx | 169.0 µWb |
| Pc Coefficient | 0.31 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 40x15x6 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 14.21 kg | Standard |
| Water (riverbed) |
16.27 kg
(+2.06 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Caution: On a vertical surface, the magnet holds just a fraction of its nominal pull.
2. Plate thickness effect
*Thin steel (e.g. 0.5mm PC case) severely reduces the holding force.
3. Heat tolerance
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.31
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also offers
Advantages and disadvantages of neodymium magnets.
Pros
- They have constant strength, and over around 10 years their attraction force decreases symbolically – ~1% (according to theory),
- They retain their magnetic properties even under external field action,
- By applying a smooth coating of gold, the element acquires an elegant look,
- Magnetic induction on the working part of the magnet is maximum,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can work (depending on the form) even at a temperature of 230°C or more...
- Due to the ability of accurate molding and customization to unique requirements, NdFeB magnets can be modeled in a broad palette of shapes and sizes, which amplifies use scope,
- Key role in modern industrial fields – they are utilized in HDD drives, drive modules, advanced medical instruments, also industrial machines.
- Thanks to their power density, small magnets offer high operating force, in miniature format,
Weaknesses
- They are prone to damage upon too strong impacts. To avoid cracks, it is worth protecting magnets in special housings. Such protection not only protects the magnet but also improves its resistance to damage
- NdFeB magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent weakening of strength (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- When exposed to humidity, magnets usually rust. To use them in conditions outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which secure oxidation as well as corrosion.
- We suggest cover - magnetic holder, due to difficulties in producing nuts inside the magnet and complicated forms.
- Possible danger to health – tiny shards of magnets can be dangerous, if swallowed, which becomes key in the context of child safety. It is also worth noting that small elements of these products can be problematic in diagnostics medical in case of swallowing.
- High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which can limit application in large quantities
Holding force characteristics
Highest magnetic holding force – what contributes to it?
- with the use of a sheet made of special test steel, ensuring maximum field concentration
- with a cross-section of at least 10 mm
- with a plane perfectly flat
- without the slightest clearance between the magnet and steel
- for force applied at a right angle (in the magnet axis)
- at room temperature
Impact of factors on magnetic holding capacity in practice
- Distance (between the magnet and the metal), because even a microscopic clearance (e.g. 0.5 mm) leads to a decrease in lifting capacity by up to 50% (this also applies to varnish, corrosion or debris).
- Load vector – highest force is reached only during pulling at a 90° angle. The force required to slide of the magnet along the surface is typically many times smaller (approx. 1/5 of the lifting capacity).
- Element thickness – for full efficiency, the steel must be adequately massive. Paper-thin metal limits the attraction force (the magnet "punches through" it).
- Steel grade – ideal substrate is high-permeability steel. Cast iron may generate lower lifting capacity.
- Surface condition – ground elements ensure maximum contact, which increases field saturation. Uneven metal reduce efficiency.
- Operating temperature – NdFeB sinters have a sensitivity to temperature. When it is hot they lose power, and in frost gain strength (up to a certain limit).
Lifting capacity was measured using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, however under shearing force the holding force is lower. In addition, even a minimal clearance between the magnet’s surface and the plate decreases the holding force.
Precautions when working with NdFeB magnets
Crushing force
Large magnets can crush fingers in a fraction of a second. Under no circumstances put your hand between two strong magnets.
Threat to electronics
Equipment safety: Strong magnets can ruin payment cards and delicate electronics (pacemakers, hearing aids, timepieces).
Do not underestimate power
Before use, read the rules. Sudden snapping can break the magnet or hurt your hand. Think ahead.
Magnets are brittle
NdFeB magnets are sintered ceramics, which means they are prone to chipping. Clashing of two magnets will cause them breaking into shards.
Warning for heart patients
Life threat: Neodymium magnets can turn off pacemakers and defibrillators. Stay away if you have medical devices.
Dust explosion hazard
Mechanical processing of NdFeB material carries a risk of fire hazard. Magnetic powder reacts violently with oxygen and is hard to extinguish.
GPS and phone interference
An intense magnetic field negatively affects the functioning of compasses in phones and navigation systems. Do not bring magnets near a smartphone to prevent breaking the sensors.
Power loss in heat
Regular neodymium magnets (grade N) undergo demagnetization when the temperature exceeds 80°C. This process is irreversible.
Swallowing risk
Adult use only. Small elements can be swallowed, causing serious injuries. Keep away from kids and pets.
Metal Allergy
Medical facts indicate that the nickel plating (standard magnet coating) is a common allergen. If your skin reacts to metals, avoid touching magnets with bare hands and opt for encased magnets.
