e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnetic Nd2Fe14B - our proposal. Practically all "magnets" in our store are in stock for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnets for water searching F400 GOLD

Where to buy powerful neodymium magnet? Magnet holders in solid and airtight steel casing are excellent for use in difficult climate conditions, including during snow and rain check...

magnets with holders

Magnetic holders can be applied to enhance production, underwater discoveries, or searching for meteorites made of metal see more...

Enjoy delivery of your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 40x15x6 / N38 - lamellar magnet

lamellar magnet

Catalog no 020155

GTIN: 5906301811619

5

length [±0,1 mm]

40 mm

Width [±0,1 mm]

15 mm

Height [±0,1 mm]

6 mm

Weight

27 g

Magnetization Direction

↑ axial

Load capacity

11.61 kg / 113.86 N

Magnetic Induction

286.36 mT

Coating

[NiCuNi] nickel

16.80 with VAT / pcs + price for transport

13.66 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
13.66 ZŁ
16.80 ZŁ
price from 44 pcs
12.84 ZŁ
15.79 ZŁ
price from 162 pcs
12.02 ZŁ
14.79 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 40x15x6 / N38 - lamellar magnet

Specification/characteristics MPL 40x15x6 / N38 - lamellar magnet
properties
values
Cat. no.
020155
GTIN
5906301811619
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
40 mm [±0,1 mm]
Width
15 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
27 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
11.61 kg / 113.86 N
Magnetic Induction ~ ?
286.36 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets min. MPL 40x15x6 / N38 are magnets made from neodymium in a flat form. They are valued for their exceptionally potent magnetic properties, which outshine standard ferrite magnets.
Thanks to their high strength, flat magnets are regularly applied in devices that require exceptional adhesion.
Most common temperature resistance of flat magnets is 80°C, but with larger dimensions, this value rises.
Moreover, flat magnets commonly have special coatings applied to their surfaces, such as nickel, gold, or chrome, to improve their durability.
The magnet with the designation MPL 40x15x6 / N38 and a magnetic force 11.61 kg weighing just 27 grams, making it the excellent choice for projects needing a flat magnet.
Neodymium flat magnets provide a range of advantages versus other magnet shapes, which cause them being the best choice for a multitude of projects:
Contact surface: Due to their flat shape, flat magnets guarantee a larger contact surface with adjacent parts, which can be beneficial in applications requiring a stronger magnetic connection.
Technology applications: These are often utilized in various devices, e.g. sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: Their flat shape makes mounting, especially when it is required to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets allows creators a lot of flexibility in placing them in devices, which can be more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet can offer better stability, reducing the risk of shifting or rotating. However, it's important to note that the optimal shape of the magnet depends on the specific application and requirements. In some cases, other shapes, like cylindrical or spherical, are a better choice.
How do magnets work? Magnets attract ferromagnetic materials, such as iron elements, objects containing nickel, cobalt or special alloys of ferromagnetic metals. Moreover, magnets may lesser affect alloys containing iron, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
Magnets work thanks to the properties of their magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of these objects creates attractive forces, which attract materials containing nickel or other magnetic materials.

Magnets have two main poles: north (N) and south (S), which attract each other when they are oppositely oriented. Similar poles, e.g. two north poles, repel each other.
Thanks to this principle of operation, magnets are commonly used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them ideal for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the materials used.
Magnets do not attract plastics, glass, wooden materials or precious stones. Additionally, magnets do not affect most metals, such as copper items, aluminum, copper, aluminum, and gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless exposed to a very strong magnetic field.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as compasses, magnetic stripe cards and even electronic devices sensitive to magnetic fields. Therefore, it is important to exercise caution when using magnets.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time - after approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
  • Significant importance in advanced technologically fields – are used in computer drives, electric motors, medical devices or very advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Health risk associated with microscopic parts of magnets can be dangerous, in case of ingestion, which becomes significant in the aspect of protecting young children. Additionally, miniscule components of these devices are able to hinder the diagnostic process in case of swallowing.

Exercise Caution with Neodymium Magnets

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets bounce and clash mutually within a distance of several to around 10 cm from each other.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Magnets made of neodymium are particularly fragile, which leads to damage.

Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

  Do not give neodymium magnets to youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Safety rules!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98