MPL 40x15x6 / N38 - lamellar magnet
lamellar magnet
Catalog no 020155
GTIN: 5906301811619
length [±0,1 mm]
40 mm
Width [±0,1 mm]
15 mm
Height [±0,1 mm]
6 mm
Weight
27 g
Magnetization Direction
↑ axial
Load capacity
11.61 kg / 113.86 N
Magnetic Induction
286.36 mT
Coating
[NiCuNi] nickel
16.80 ZŁ with VAT / pcs + price for transport
13.66 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Pick up the phone and ask
+48 888 99 98 98
otherwise let us know using
contact form
the contact page.
Weight along with appearance of a magnet can be analyzed using our
online calculation tool.
Same-day shipping for orders placed before 14:00.
MPL 40x15x6 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Due to their strength, flat magnets are commonly used in products that require strong holding power.
The standard temperature resistance of flat magnets is 80 °C, but depending on the dimensions, this value can increase.
In addition, flat magnets usually have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, for enhancing their corrosion resistance.
The magnet with the designation MPL 40x15x6 / N38 and a magnetic force 11.61 kg which weighs a mere 27 grams, making it the excellent choice for applications requiring a flat shape.
Contact surface: Due to their flat shape, flat magnets ensure a greater contact surface with other components, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: They are often applied in many devices, such as sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: The flat form's flat shape makes it easier mounting, especially when it is necessary to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets permits designers a lot of flexibility in arranging them in devices, which is more difficult with magnets of more complex shapes.
Stability: In some applications, the flat base of the flat magnet may offer better stability, reducing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet is dependent on the given use and requirements. In certain cases, other shapes, like cylindrical or spherical, may be more appropriate.
Magnets have two main poles: north (N) and south (S), which interact with each other when they are different. Poles of the same kind, e.g. two north poles, repel each other.
Due to these properties, magnets are commonly used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them ideal for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the materials used.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards and even medical equipment, like pacemakers. Therefore, it is important to exercise caution when using magnets.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They retain their full power for nearly 10 years – the loss is just ~1% (in theory),
- They remain magnetized despite exposure to strong external fields,
- Thanks to the polished finish and nickel coating, they have an visually attractive appearance,
- Magnetic induction on the surface of these magnets is impressively powerful,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for accurate shaping and adjustment to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
- Important function in cutting-edge sectors – they find application in computer drives, electromechanical systems, diagnostic apparatus along with other advanced devices,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of magnetic elements:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall robustness,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of polymer,
- Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
- Safety concern linked to microscopic shards may arise, especially if swallowed, which is notable in the health of young users. Furthermore, miniature parts from these assemblies might interfere with diagnostics after being swallowed,
- In cases of large-volume purchasing, neodymium magnet cost may be a barrier,
Safety Precautions
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
In the case of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Neodymium magnets should not be around youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnetic are highly susceptible to damage, leading to their cracking.
Neodymium magnetic are extremely fragile, and by joining them in an uncontrolled manner, they will break. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Exercise caution!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.