MPL 45x25x10 / N38 - lamellar magnet
lamellar magnet
Catalog no 020164
GTIN/EAN: 5906301811701
length
45 mm [±0,1 mm]
Width
25 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
84.38 g
Magnetization Direction
↑ axial
Load capacity
28.48 kg / 279.40 N
Magnetic Induction
306.29 mT / 3063 Gs
Coating
[NiCuNi] Nickel
35.01 ZŁ with VAT / pcs + price for transport
28.46 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 888 99 98 98
alternatively send us a note through
inquiry form
the contact form page.
Force along with appearance of a magnet can be verified with our
modular calculator.
Same-day processing for orders placed before 14:00.
Technical of the product - MPL 45x25x10 / N38 - lamellar magnet
Specification / characteristics - MPL 45x25x10 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020164 |
| GTIN/EAN | 5906301811701 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 45 mm [±0,1 mm] |
| Width | 25 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 84.38 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 28.48 kg / 279.40 N |
| Magnetic Induction ~ ? | 306.29 mT / 3063 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical simulation of the product - report
The following data constitute the outcome of a physical simulation. Results are based on models for the material Nd2Fe14B. Actual performance might slightly differ from theoretical values. Please consider these calculations as a reference point for designers.
Table 1: Static force (force vs distance) - power drop
MPL 45x25x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3062 Gs
306.2 mT
|
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
crushing |
| 1 mm |
2918 Gs
291.8 mT
|
25.86 kg / 57.00 lbs
25856.7 g / 253.7 N
|
crushing |
| 2 mm |
2760 Gs
276.0 mT
|
23.13 kg / 51.00 lbs
23133.2 g / 226.9 N
|
crushing |
| 3 mm |
2595 Gs
259.5 mT
|
20.45 kg / 45.08 lbs
20449.5 g / 200.6 N
|
crushing |
| 5 mm |
2261 Gs
226.1 mT
|
15.53 kg / 34.23 lbs
15525.8 g / 152.3 N
|
crushing |
| 10 mm |
1529 Gs
152.9 mT
|
7.10 kg / 15.64 lbs
7096.1 g / 69.6 N
|
warning |
| 15 mm |
1018 Gs
101.8 mT
|
3.15 kg / 6.94 lbs
3147.4 g / 30.9 N
|
warning |
| 20 mm |
688 Gs
68.8 mT
|
1.44 kg / 3.17 lbs
1439.4 g / 14.1 N
|
low risk |
| 30 mm |
340 Gs
34.0 mT
|
0.35 kg / 0.77 lbs
350.8 g / 3.4 N
|
low risk |
| 50 mm |
111 Gs
11.1 mT
|
0.04 kg / 0.08 lbs
37.1 g / 0.4 N
|
low risk |
Table 2: Slippage capacity (wall)
MPL 45x25x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
5.70 kg / 12.56 lbs
5696.0 g / 55.9 N
|
| 1 mm | Stal (~0.2) |
5.17 kg / 11.40 lbs
5172.0 g / 50.7 N
|
| 2 mm | Stal (~0.2) |
4.63 kg / 10.20 lbs
4626.0 g / 45.4 N
|
| 3 mm | Stal (~0.2) |
4.09 kg / 9.02 lbs
4090.0 g / 40.1 N
|
| 5 mm | Stal (~0.2) |
3.11 kg / 6.85 lbs
3106.0 g / 30.5 N
|
| 10 mm | Stal (~0.2) |
1.42 kg / 3.13 lbs
1420.0 g / 13.9 N
|
| 15 mm | Stal (~0.2) |
0.63 kg / 1.39 lbs
630.0 g / 6.2 N
|
| 20 mm | Stal (~0.2) |
0.29 kg / 0.63 lbs
288.0 g / 2.8 N
|
| 30 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MPL 45x25x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
8.54 kg / 18.84 lbs
8544.0 g / 83.8 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
5.70 kg / 12.56 lbs
5696.0 g / 55.9 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
2.85 kg / 6.28 lbs
2848.0 g / 27.9 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
14.24 kg / 31.39 lbs
14240.0 g / 139.7 N
|
Table 4: Steel thickness (saturation) - power losses
MPL 45x25x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.42 kg / 3.14 lbs
1424.0 g / 14.0 N
|
| 1 mm |
|
3.56 kg / 7.85 lbs
3560.0 g / 34.9 N
|
| 2 mm |
|
7.12 kg / 15.70 lbs
7120.0 g / 69.8 N
|
| 3 mm |
|
10.68 kg / 23.55 lbs
10680.0 g / 104.8 N
|
| 5 mm |
|
17.80 kg / 39.24 lbs
17800.0 g / 174.6 N
|
| 10 mm |
|
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
| 11 mm |
|
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
| 12 mm |
|
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
Table 5: Thermal resistance (stability) - power drop
MPL 45x25x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
OK |
| 40 °C | -2.2% |
27.85 kg / 61.41 lbs
27853.4 g / 273.2 N
|
OK |
| 60 °C | -4.4% |
27.23 kg / 60.02 lbs
27226.9 g / 267.1 N
|
|
| 80 °C | -6.6% |
26.60 kg / 58.64 lbs
26600.3 g / 260.9 N
|
|
| 100 °C | -28.8% |
20.28 kg / 44.70 lbs
20277.8 g / 198.9 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field collision
MPL 45x25x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
65.04 kg / 143.40 lbs
4 590 Gs
|
9.76 kg / 21.51 lbs
9757 g / 95.7 N
|
N/A |
| 1 mm |
62.12 kg / 136.95 lbs
5 985 Gs
|
9.32 kg / 20.54 lbs
9318 g / 91.4 N
|
55.91 kg / 123.25 lbs
~0 Gs
|
| 2 mm |
59.05 kg / 130.19 lbs
5 836 Gs
|
8.86 kg / 19.53 lbs
8858 g / 86.9 N
|
53.15 kg / 117.17 lbs
~0 Gs
|
| 3 mm |
55.95 kg / 123.34 lbs
5 680 Gs
|
8.39 kg / 18.50 lbs
8392 g / 82.3 N
|
50.35 kg / 111.01 lbs
~0 Gs
|
| 5 mm |
49.74 kg / 109.66 lbs
5 356 Gs
|
7.46 kg / 16.45 lbs
7461 g / 73.2 N
|
44.77 kg / 98.70 lbs
~0 Gs
|
| 10 mm |
35.46 kg / 78.17 lbs
4 522 Gs
|
5.32 kg / 11.73 lbs
5319 g / 52.2 N
|
31.91 kg / 70.36 lbs
~0 Gs
|
| 20 mm |
16.21 kg / 35.73 lbs
3 057 Gs
|
2.43 kg / 5.36 lbs
2431 g / 23.8 N
|
14.59 kg / 32.16 lbs
~0 Gs
|
| 50 mm |
1.58 kg / 3.48 lbs
955 Gs
|
0.24 kg / 0.52 lbs
237 g / 2.3 N
|
1.42 kg / 3.14 lbs
~0 Gs
|
| 60 mm |
0.80 kg / 1.77 lbs
680 Gs
|
0.12 kg / 0.26 lbs
120 g / 1.2 N
|
0.72 kg / 1.59 lbs
~0 Gs
|
| 70 mm |
0.43 kg / 0.94 lbs
497 Gs
|
0.06 kg / 0.14 lbs
64 g / 0.6 N
|
0.38 kg / 0.85 lbs
~0 Gs
|
| 80 mm |
0.24 kg / 0.53 lbs
372 Gs
|
0.04 kg / 0.08 lbs
36 g / 0.4 N
|
0.22 kg / 0.47 lbs
~0 Gs
|
| 90 mm |
0.14 kg / 0.31 lbs
284 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.13 kg / 0.28 lbs
~0 Gs
|
| 100 mm |
0.08 kg / 0.19 lbs
221 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - warnings
MPL 45x25x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 16.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 12.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 10.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 7.5 cm |
| Remote | 50 Gs (5.0 mT) | 7.0 cm |
| Payment card | 400 Gs (40.0 mT) | 3.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 2.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MPL 45x25x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
21.22 km/h
(5.89 m/s)
|
1.47 J | |
| 30 mm |
32.34 km/h
(8.98 m/s)
|
3.40 J | |
| 50 mm |
41.46 km/h
(11.52 m/s)
|
5.60 J | |
| 100 mm |
58.59 km/h
(16.28 m/s)
|
11.18 J |
Table 9: Anti-corrosion coating durability
MPL 45x25x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MPL 45x25x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 35 829 Mx | 358.3 µWb |
| Pc Coefficient | 0.36 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 45x25x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 28.48 kg | Standard |
| Water (riverbed) |
32.61 kg
(+4.13 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Note: On a vertical surface, the magnet holds just ~20% of its nominal pull.
2. Efficiency vs thickness
*Thin steel (e.g. 0.5mm PC case) drastically reduces the holding force.
3. Temperature resistance
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.36
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other offers
Strengths and weaknesses of neodymium magnets.
Strengths
- They have stable power, and over nearly ten years their attraction force decreases symbolically – ~1% (in testing),
- They show high resistance to demagnetization induced by external magnetic fields,
- The use of an elegant layer of noble metals (nickel, gold, silver) causes the element to present itself better,
- Magnetic induction on the working part of the magnet remains exceptional,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and are able to act (depending on the shape) even at a temperature of 230°C or more...
- Thanks to freedom in constructing and the ability to adapt to specific needs,
- Fundamental importance in modern industrial fields – they find application in HDD drives, brushless drives, advanced medical instruments, and industrial machines.
- Relatively small size with high pulling force – neodymium magnets offer high power in small dimensions, which enables their usage in compact constructions
Disadvantages
- They are fragile upon too strong impacts. To avoid cracks, it is worth securing magnets using a steel holder. Such protection not only protects the magnet but also improves its resistance to damage
- Neodymium magnets decrease their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we advise using waterproof magnets made of rubber, plastic or other material stable to moisture, in case of application outdoors
- We suggest casing - magnetic holder, due to difficulties in realizing threads inside the magnet and complex shapes.
- Health risk resulting from small fragments of magnets can be dangerous, if swallowed, which is particularly important in the context of child health protection. It is also worth noting that small components of these products are able to disrupt the diagnostic process medical when they are in the body.
- Due to complex production process, their price exceeds standard values,
Holding force characteristics
Breakaway strength of the magnet in ideal conditions – what contributes to it?
- using a plate made of mild steel, functioning as a circuit closing element
- whose transverse dimension reaches at least 10 mm
- with an ground touching surface
- without the slightest insulating layer between the magnet and steel
- for force applied at a right angle (in the magnet axis)
- in stable room temperature
What influences lifting capacity in practice
- Distance – existence of any layer (paint, dirt, gap) acts as an insulator, which lowers power rapidly (even by 50% at 0.5 mm).
- Angle of force application – maximum parameter is obtained only during perpendicular pulling. The force required to slide of the magnet along the surface is usually many times lower (approx. 1/5 of the lifting capacity).
- Substrate thickness – to utilize 100% power, the steel must be sufficiently thick. Thin sheet limits the lifting capacity (the magnet "punches through" it).
- Material composition – different alloys attracts identically. High carbon content worsen the attraction effect.
- Surface finish – ideal contact is possible only on polished steel. Rough texture reduce the real contact area, reducing force.
- Heat – NdFeB sinters have a sensitivity to temperature. At higher temperatures they are weaker, and at low temperatures they can be stronger (up to a certain limit).
Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under perpendicular forces, in contrast under shearing force the holding force is lower. Moreover, even a small distance between the magnet’s surface and the plate reduces the lifting capacity.
H&S for magnets
Beware of splinters
NdFeB magnets are ceramic materials, which means they are prone to chipping. Clashing of two magnets will cause them breaking into small pieces.
Dust is flammable
Mechanical processing of neodymium magnets poses a fire risk. Magnetic powder reacts violently with oxygen and is difficult to extinguish.
Medical interference
Individuals with a pacemaker should maintain an absolute distance from magnets. The magnetism can interfere with the functioning of the implant.
Precision electronics
A strong magnetic field interferes with the operation of magnetometers in phones and GPS navigation. Do not bring magnets close to a smartphone to prevent damaging the sensors.
Finger safety
Large magnets can break fingers in a fraction of a second. Do not place your hand between two attracting surfaces.
Swallowing risk
Neodymium magnets are not toys. Swallowing several magnets can lead to them pinching intestinal walls, which constitutes a direct threat to life and requires urgent medical intervention.
Keep away from computers
Equipment safety: Strong magnets can ruin payment cards and delicate electronics (pacemakers, medical aids, mechanical watches).
Handling rules
Before use, check safety instructions. Sudden snapping can destroy the magnet or hurt your hand. Be predictive.
Maximum temperature
Regular neodymium magnets (grade N) undergo demagnetization when the temperature surpasses 80°C. This process is irreversible.
Allergic reactions
A percentage of the population have a sensitization to Ni, which is the standard coating for neodymium magnets. Prolonged contact might lead to an allergic reaction. It is best to wear protective gloves.
