tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our proposal. Practically all magnesy neodymowe on our website are in stock for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnet for searching F300 GOLD

Where to buy strong magnet? Magnet holders in airtight and durable enclosure are excellent for use in variable and difficult weather conditions, including during rain and snow check...

magnets with holders

Magnetic holders can be applied to improve production processes, underwater exploration, or locating space rocks from gold check...

Enjoy delivery of your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 42x20x5 / N38 - lamellar magnet

lamellar magnet

Catalog no 020163

GTIN: 5906301811695

5

length [±0,1 mm]

42 mm

Width [±0,1 mm]

20 mm

Height [±0,1 mm]

5 mm

Weight

31.5 g

Magnetization Direction

↑ axial

Load capacity

11.44 kg / 112.19 N

Magnetic Induction

203.37 mT

Coating

[NiCuNi] nickel

15.49 with VAT / pcs + price for transport

12.59 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
12.59 ZŁ
15.49 ZŁ
price from 50 pcs
11.83 ZŁ
14.56 ZŁ
price from 200 pcs
11.08 ZŁ
13.63 ZŁ

Not sure where to buy?

Call us now +48 22 499 98 98 alternatively let us know via our online form the contact section.
Force and appearance of a magnet can be tested on our power calculator.

Orders submitted before 14:00 will be dispatched today!

MPL 42x20x5 / N38 - lamellar magnet

Specification/characteristics MPL 42x20x5 / N38 - lamellar magnet
properties
values
Cat. no.
020163
GTIN
5906301811695
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
42 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
31.5 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
11.44 kg / 112.19 N
Magnetic Induction ~ ?
203.37 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets min. MPL 42x20x5 / N38 are magnets made from neodymium in a flat form. They are valued for their very strong magnetic properties, which surpass traditional ferrite magnets.
Thanks to their high strength, flat magnets are frequently used in devices that need strong holding power.
Most common temperature resistance of flat magnets is 80°C, but with larger dimensions, this value can increase.
Additionally, flat magnets usually have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, to increase their corrosion resistance.
The magnet named MPL 42x20x5 / N38 i.e. a magnetic strength 11.44 kg weighing only 31.5 grams, making it the perfect choice for applications requiring a flat shape.
Neodymium flat magnets provide a range of advantages compared to other magnet shapes, which cause them being a perfect solution for many applications:
Contact surface: Thanks to their flat shape, flat magnets ensure a greater contact surface with other components, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: They are often utilized in many devices, e.g. sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: The flat form's flat shape makes mounting, especially when it is required to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets gives the possibility creators greater flexibility in placing them in devices, which can be more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, reducing the risk of shifting or rotating. However, it's important to note that the optimal shape of the magnet is dependent on the specific application and requirements. In certain cases, other shapes, like cylindrical or spherical, are more appropriate.
How do magnets work? Magnets attract objects made of ferromagnetic materials, such as iron elements, objects containing nickel, cobalt or alloys of metals with magnetic properties. Additionally, magnets may weaker affect alloys containing iron, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
The operation of magnets is based on the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of magnets creates attractive interactions, which attract objects made of iron or other magnetic materials.

Magnets have two main poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Poles of the same kind, e.g. two north poles, repel each other.
Due to these properties, magnets are commonly used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring powerful magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the materials used.
Magnets do not attract plastics, glass items, wood and precious stones. Furthermore, magnets do not affect most metals, such as copper items, aluminum, copper, aluminum, and gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless exposed to a very strong magnetic field.
It should be noted that high temperatures can weaken the magnet's effect. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as compasses, magnetic stripe cards or medical equipment, like pacemakers. Therefore, it is important to exercise caution when using magnets.
A flat magnet of class N50 and N52 is a powerful and highly strong metal object in the form of a plate, that offers strong holding power and versatile application. Competitive price, fast shipping, resistance and broad range of uses.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their immense pulling force, neodymium magnets offer the following advantages:

  • They retain their magnetic properties for almost 10 years – the drop is just ~1% (according to analyses),
  • They are highly resistant to demagnetization caused by external field interference,
  • Because of the brilliant layer of nickel, the component looks high-end,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their application range,
  • Significant impact in new technology industries – they serve a purpose in HDDs, rotating machines, medical equipment or even other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which allows for use in compact constructions

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage while also enhances its overall robustness,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of rubber for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing complex structures directly in the magnet,
  • Health risk due to small fragments may arise, in case of ingestion, which is crucial in the health of young users. Additionally, minuscule fragments from these devices may disrupt scanning when ingested,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Detachment force of the magnet in optimal conditionswhat it depends on?

The given strength of the magnet means the optimal strength, measured in the best circumstances, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • in conditions of no clearance
  • in a perpendicular direction of force
  • in normal thermal conditions

Determinants of practical lifting force of a magnet

The lifting capacity of a magnet is influenced by in practice the following factors, according to their importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured by applying a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, in contrast under parallel forces the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet’s surface and the plate reduces the load capacity.

Exercise Caution with Neodymium Magnets

  Do not give neodymium magnets to children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

If joining of neodymium magnets is not controlled, then they may crumble and crack. You can't move them to each other. At a distance less than 10 cm you should have them very firmly.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnetic are highly susceptible to damage, leading to breaking.

Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are the most powerful magnets ever invented. Their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Exercise caution!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98