MPL 40x10x5x2[7/3.5] / N38 - lamellar magnet
lamellar magnet
Catalog no 020397
GTIN/EAN: 5906301811909
length
40 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
15 g
Magnetization Direction
↑ axial
Load capacity
11.85 kg / 116.27 N
Magnetic Induction
321.37 mT / 3214 Gs
Coating
[NiCuNi] Nickel
9.93 ZŁ with VAT / pcs + price for transport
8.07 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
or send us a note through
our online form
through our site.
Specifications as well as shape of magnetic components can be checked with our
magnetic mass calculator.
Orders submitted before 14:00 will be dispatched today!
Product card - MPL 40x10x5x2[7/3.5] / N38 - lamellar magnet
Specification / characteristics - MPL 40x10x5x2[7/3.5] / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020397 |
| GTIN/EAN | 5906301811909 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 40 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 15 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 11.85 kg / 116.27 N |
| Magnetic Induction ~ ? | 321.37 mT / 3214 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical modeling of the product - report
These data represent the direct effect of a mathematical calculation. Values rely on models for the class Nd2Fe14B. Actual parameters might slightly differ from theoretical values. Treat these data as a supplementary guide during assembly planning.
Table 1: Static pull force (pull vs distance) - interaction chart
MPL 40x10x5x2[7/3.5] / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3212 Gs
321.2 mT
|
11.85 kg / 26.12 lbs
11850.0 g / 116.2 N
|
critical level |
| 1 mm |
2791 Gs
279.1 mT
|
8.95 kg / 19.73 lbs
8947.7 g / 87.8 N
|
warning |
| 2 mm |
2358 Gs
235.8 mT
|
6.38 kg / 14.08 lbs
6384.9 g / 62.6 N
|
warning |
| 3 mm |
1965 Gs
196.5 mT
|
4.43 kg / 9.77 lbs
4432.4 g / 43.5 N
|
warning |
| 5 mm |
1360 Gs
136.0 mT
|
2.12 kg / 4.68 lbs
2122.9 g / 20.8 N
|
warning |
| 10 mm |
615 Gs
61.5 mT
|
0.43 kg / 0.96 lbs
434.1 g / 4.3 N
|
low risk |
| 15 mm |
329 Gs
32.9 mT
|
0.12 kg / 0.27 lbs
124.5 g / 1.2 N
|
low risk |
| 20 mm |
195 Gs
19.5 mT
|
0.04 kg / 0.10 lbs
43.9 g / 0.4 N
|
low risk |
| 30 mm |
83 Gs
8.3 mT
|
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
low risk |
| 50 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.00 lbs
0.6 g / 0.0 N
|
low risk |
Table 2: Slippage capacity (vertical surface)
MPL 40x10x5x2[7/3.5] / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.37 kg / 5.22 lbs
2370.0 g / 23.2 N
|
| 1 mm | Stal (~0.2) |
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
| 2 mm | Stal (~0.2) |
1.28 kg / 2.81 lbs
1276.0 g / 12.5 N
|
| 3 mm | Stal (~0.2) |
0.89 kg / 1.95 lbs
886.0 g / 8.7 N
|
| 5 mm | Stal (~0.2) |
0.42 kg / 0.93 lbs
424.0 g / 4.2 N
|
| 10 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - vertical pull
MPL 40x10x5x2[7/3.5] / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
3.55 kg / 7.84 lbs
3555.0 g / 34.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.37 kg / 5.22 lbs
2370.0 g / 23.2 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
1.19 kg / 2.61 lbs
1185.0 g / 11.6 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
5.93 kg / 13.06 lbs
5925.0 g / 58.1 N
|
Table 4: Steel thickness (substrate influence) - power losses
MPL 40x10x5x2[7/3.5] / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.59 kg / 1.31 lbs
592.5 g / 5.8 N
|
| 1 mm |
|
1.48 kg / 3.27 lbs
1481.3 g / 14.5 N
|
| 2 mm |
|
2.96 kg / 6.53 lbs
2962.5 g / 29.1 N
|
| 3 mm |
|
4.44 kg / 9.80 lbs
4443.8 g / 43.6 N
|
| 5 mm |
|
7.41 kg / 16.33 lbs
7406.3 g / 72.7 N
|
| 10 mm |
|
11.85 kg / 26.12 lbs
11850.0 g / 116.2 N
|
| 11 mm |
|
11.85 kg / 26.12 lbs
11850.0 g / 116.2 N
|
| 12 mm |
|
11.85 kg / 26.12 lbs
11850.0 g / 116.2 N
|
Table 5: Thermal stability (stability) - resistance threshold
MPL 40x10x5x2[7/3.5] / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.85 kg / 26.12 lbs
11850.0 g / 116.2 N
|
OK |
| 40 °C | -2.2% |
11.59 kg / 25.55 lbs
11589.3 g / 113.7 N
|
OK |
| 60 °C | -4.4% |
11.33 kg / 24.98 lbs
11328.6 g / 111.1 N
|
|
| 80 °C | -6.6% |
11.07 kg / 24.40 lbs
11067.9 g / 108.6 N
|
|
| 100 °C | -28.8% |
8.44 kg / 18.60 lbs
8437.2 g / 82.8 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MPL 40x10x5x2[7/3.5] / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
25.44 kg / 56.10 lbs
4 569 Gs
|
3.82 kg / 8.41 lbs
3817 g / 37.4 N
|
N/A |
| 1 mm |
22.33 kg / 49.22 lbs
6 018 Gs
|
3.35 kg / 7.38 lbs
3349 g / 32.9 N
|
20.09 kg / 44.30 lbs
~0 Gs
|
| 2 mm |
19.21 kg / 42.36 lbs
5 582 Gs
|
2.88 kg / 6.35 lbs
2882 g / 28.3 N
|
17.29 kg / 38.12 lbs
~0 Gs
|
| 3 mm |
16.31 kg / 35.96 lbs
5 144 Gs
|
2.45 kg / 5.39 lbs
2447 g / 24.0 N
|
14.68 kg / 32.36 lbs
~0 Gs
|
| 5 mm |
11.45 kg / 25.23 lbs
4 309 Gs
|
1.72 kg / 3.78 lbs
1717 g / 16.8 N
|
10.30 kg / 22.71 lbs
~0 Gs
|
| 10 mm |
4.56 kg / 10.05 lbs
2 719 Gs
|
0.68 kg / 1.51 lbs
684 g / 6.7 N
|
4.10 kg / 9.04 lbs
~0 Gs
|
| 20 mm |
0.93 kg / 2.05 lbs
1 230 Gs
|
0.14 kg / 0.31 lbs
140 g / 1.4 N
|
0.84 kg / 1.85 lbs
~0 Gs
|
| 50 mm |
0.04 kg / 0.08 lbs
249 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.03 kg / 0.08 lbs
~0 Gs
|
| 60 mm |
0.02 kg / 0.04 lbs
167 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.02 lbs
116 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
84 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (implants) - warnings
MPL 40x10x5x2[7/3.5] / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 9.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 7.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 5.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 4.5 cm |
| Remote | 50 Gs (5.0 mT) | 4.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MPL 40x10x5x2[7/3.5] / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
28.99 km/h
(8.05 m/s)
|
0.49 J | |
| 30 mm |
49.12 km/h
(13.64 m/s)
|
1.40 J | |
| 50 mm |
63.39 km/h
(17.61 m/s)
|
2.33 J | |
| 100 mm |
89.64 km/h
(24.90 m/s)
|
4.65 J |
Table 9: Surface protection spec
MPL 40x10x5x2[7/3.5] / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MPL 40x10x5x2[7/3.5] / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 11 419 Mx | 114.2 µWb |
| Pc Coefficient | 0.31 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 40x10x5x2[7/3.5] / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 11.85 kg | Standard |
| Water (riverbed) |
13.57 kg
(+1.72 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Caution: On a vertical wall, the magnet holds only approx. 20-30% of its max power.
2. Plate thickness effect
*Thin steel (e.g. computer case) significantly reduces the holding force.
3. Heat tolerance
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.31
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See more deals
Strengths and weaknesses of Nd2Fe14B magnets.
Strengths
- Their strength is maintained, and after around ten years it decreases only by ~1% (theoretically),
- They do not lose their magnetic properties even under close interference source,
- By covering with a lustrous layer of silver, the element has an proper look,
- The surface of neodymium magnets generates a concentrated magnetic field – this is a distinguishing feature,
- Due to their durability and thermal resistance, neodymium magnets can operate (depending on the shape) even at high temperatures reaching 230°C or more...
- Possibility of detailed modeling as well as modifying to concrete needs,
- Universal use in high-tech industry – they are used in data components, electromotive mechanisms, advanced medical instruments, also complex engineering applications.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in small dimensions, which enables their usage in miniature devices
Disadvantages
- Brittleness is one of their disadvantages. Upon intense impact they can fracture. We advise keeping them in a steel housing, which not only protects them against impacts but also increases their durability
- Neodymium magnets decrease their power under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
- They oxidize in a humid environment. For use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- Due to limitations in realizing threads and complicated shapes in magnets, we propose using cover - magnetic holder.
- Possible danger related to microscopic parts of magnets pose a threat, in case of ingestion, which is particularly important in the context of child safety. Additionally, tiny parts of these devices can disrupt the diagnostic process medical after entering the body.
- High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which can limit application in large quantities
Holding force characteristics
Magnetic strength at its maximum – what it depends on?
- using a plate made of mild steel, serving as a magnetic yoke
- with a cross-section minimum 10 mm
- with an ideally smooth touching surface
- with direct contact (no impurities)
- during pulling in a direction perpendicular to the plane
- at standard ambient temperature
Lifting capacity in real conditions – factors
- Distance – the presence of foreign body (paint, dirt, air) acts as an insulator, which lowers power rapidly (even by 50% at 0.5 mm).
- Angle of force application – highest force is obtained only during pulling at a 90° angle. The shear force of the magnet along the surface is typically several times lower (approx. 1/5 of the lifting capacity).
- Substrate thickness – for full efficiency, the steel must be sufficiently thick. Thin sheet limits the lifting capacity (the magnet "punches through" it).
- Metal type – different alloys reacts the same. High carbon content worsen the interaction with the magnet.
- Surface condition – ground elements guarantee perfect abutment, which increases field saturation. Uneven metal weaken the grip.
- Temperature – heating the magnet causes a temporary drop of force. Check the maximum operating temperature for a given model.
Lifting capacity was measured by applying a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, however under parallel forces the holding force is lower. Moreover, even a minimal clearance between the magnet and the plate decreases the holding force.
Precautions when working with neodymium magnets
ICD Warning
Warning for patients: Strong magnetic fields disrupt electronics. Maintain at least 30 cm distance or ask another person to work with the magnets.
Sensitization to coating
Warning for allergy sufferers: The nickel-copper-nickel coating consists of nickel. If an allergic reaction appears, immediately stop handling magnets and wear gloves.
Risk of cracking
Despite the nickel coating, neodymium is delicate and cannot withstand shocks. Avoid impacts, as the magnet may crumble into hazardous fragments.
Power loss in heat
Standard neodymium magnets (grade N) lose power when the temperature surpasses 80°C. The loss of strength is permanent.
Phone sensors
Remember: rare earth magnets produce a field that confuses sensitive sensors. Maintain a safe distance from your mobile, device, and GPS.
Protect data
Device Safety: Strong magnets can ruin data carriers and delicate electronics (pacemakers, medical aids, mechanical watches).
Serious injuries
Big blocks can smash fingers instantly. Under no circumstances put your hand between two attracting surfaces.
Do not underestimate power
Before starting, check safety instructions. Uncontrolled attraction can destroy the magnet or injure your hand. Be predictive.
Danger to the youngest
These products are not toys. Accidental ingestion of several magnets may result in them connecting inside the digestive tract, which poses a critical condition and requires immediate surgery.
Fire risk
Mechanical processing of NdFeB material poses a fire hazard. Neodymium dust oxidizes rapidly with oxygen and is hard to extinguish.
