tel: +48 22 499 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. Practically all magnesy on our website are in stock for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnets for treasure hunters F400 GOLD

Where to purchase strong magnet? Magnetic holders in airtight, solid steel casing are ideally suited for use in variable and difficult climate conditions, including during snow and rain see more...

magnetic holders

Magnetic holders can be applied to facilitate production, underwater discoveries, or finding meteorites from gold more...

Enjoy shipping of your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 40x7x3 / N38 - lamellar magnet

lamellar magnet

Catalog no 020162

GTIN: 5906301811688

5

length [±0,1 mm]

40 mm

Width [±0,1 mm]

7 mm

Height [±0,1 mm]

3 mm

Weight

6.3 g

Magnetization Direction

↑ axial

Load capacity

3.96 kg / 38.83 N

Magnetic Induction

284.46 mT

Coating

[NiCuNi] nickel

2.45 with VAT / pcs + price for transport

1.99 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.99 ZŁ
2.45 ZŁ
price from 600 pcs
1.87 ZŁ
2.30 ZŁ
price from 2200 pcs
1.75 ZŁ
2.15 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 40x7x3 / N38 - lamellar magnet

Specification/characteristics MPL 40x7x3 / N38 - lamellar magnet
properties
values
Cat. no.
020162
GTIN
5906301811688
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
40 mm [±0,1 mm]
Width
7 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
6.3 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
3.96 kg / 38.83 N
Magnetic Induction ~ ?
284.46 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets i.e. MPL 40x7x3 / N38 are magnets made from neodymium in a flat form. They are known for their extremely powerful magnetic properties, which outshine standard iron magnets.
Due to their power, flat magnets are regularly used in products that require very strong attraction.
The standard temperature resistance of flat magnets is 80 °C, but depending on the dimensions, this value can increase.
In addition, flat magnets commonly have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, to improve their durability.
The magnet labeled MPL 40x7x3 / N38 i.e. a magnetic strength 3.96 kg with a weight of only 6.3 grams, making it the perfect choice for projects needing a flat magnet.
Neodymium flat magnets offer a range of advantages versus other magnet shapes, which lead to them being an ideal choice for various uses:
Contact surface: Due to their flat shape, flat magnets ensure a greater contact surface with adjacent parts, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These are often utilized in many devices, such as sensors, stepper motors, or speakers, where the thin and wide shape is important for their operation.
Mounting: The flat form's flat shape makes mounting, especially when it is required to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows designers a lot of flexibility in arranging them in structures, which can be more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet can offer better stability, reducing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet depends on the specific application and requirements. In certain cases, other shapes, like cylindrical or spherical, may be a better choice.
Attracted by magnets are objects made of ferromagnetic materials, such as iron, nickel, materials with cobalt or special alloys of ferromagnetic metals. Additionally, magnets may lesser affect alloys containing iron, such as steel. Magnets are used in many fields.
The operation of magnets is based on the properties of their magnetic field, which arises from the ordered movement of electrons in their structure. The magnetic field of magnets creates attractive interactions, which affect objects made of nickel or other ferromagnetic substances.

Magnets have two main poles: north (N) and south (S), which attract each other when they are oppositely oriented. Similar poles, e.g. two north poles, repel each other.
Thanks to this principle of operation, magnets are often used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them perfect for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the material it is made of.
Magnets do not attract plastic, glass, wooden materials and precious stones. Moreover, magnets do not affect most metals, such as copper, aluminum, copper, aluminum, and gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless exposed to a very strong magnetic field.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards and even medical equipment, like pacemakers. For this reason, it is important to exercise caution when using magnets.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose power over time - after 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic field extremely well,
  • In other words, thanks to the glossy nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by very high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in many variants of shapes and sizes, which enhances their versatility in applications.
  • Significant importance in modern technologies – find application in computer drives, electric drive mechanisms, medical apparatus and other modern machines.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, it is suggested using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Possible danger to health from tiny fragments of magnets are risky, when accidentally ingested, which is crucial in the context of children's health. Furthermore, miniscule components of these devices can hinder the diagnostic process in case of swallowing.

Exercise Caution with Neodymium Magnets

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Neodymium magnetic are extremely fragile, resulting in shattering.

Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

If you have a finger between or alternatively on the path of attracting magnets, there may be a large cut or a fracture.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

  Do not give neodymium magnets to youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Exercise caution!

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98