MPL 40x18x10 SH / N38 - lamellar magnet
lamellar magnet
Catalog no 020157
GTIN: 5906301811633
length [±0,1 mm]
40 mm
Width [±0,1 mm]
18 mm
Height [±0,1 mm]
10 mm
Weight
54 g
Magnetization Direction
↑ axial
Magnetic Induction
366.66 mT
Coating
[NiCuNi] nickel
33.83 ZŁ with VAT / pcs + price for transport
27.50 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Give us a call
+48 888 99 98 98
alternatively drop us a message using
inquiry form
the contact page.
Lifting power and structure of a magnet can be tested on our
force calculator.
Orders submitted before 14:00 will be dispatched today!
MPL 40x18x10 SH / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Thanks to their high strength, flat magnets are regularly applied in structures that need exceptional adhesion.
Typical temperature resistance of flat magnets is 80 °C, but depending on the dimensions, this value grows.
Moreover, flat magnets often have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, for enhancing their corrosion resistance.
The magnet labeled MPL 40x18x10 SH / N38 and a magnetic strength 0 kg with a weight of a mere 54 grams, making it the excellent choice for projects needing a flat magnet.
Contact surface: Thanks to their flat shape, flat magnets guarantee a greater contact surface with adjacent parts, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These magnets are often applied in many devices, such as sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: Their flat shape makes mounting, particularly when there's a need to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets gives the possibility creators a lot of flexibility in placing them in devices, which can be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet can provide better stability, minimizing the risk of sliding or rotating. It’s important to keep in mind that the optimal shape of the magnet depends on the specific project and requirements. In certain cases, other shapes, such as cylindrical or spherical, may be a better choice.
Magnets have two poles: north (N) and south (S), which attract each other when they are oppositely oriented. Similar poles, e.g. two north poles, act repelling on each other.
Due to these properties, magnets are regularly used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them indispensable for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its size and the materials used.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards or electronic devices sensitive to magnetic fields. Therefore, it is important to exercise caution when using magnets.
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (based on calculations),
- They are highly resistant to demagnetization caused by external field interference,
- By applying a bright layer of gold, the element gains a clean look,
- They possess strong magnetic force measurable at the magnet’s surface,
- Thanks to their exceptional temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- With the option for fine forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
- Wide application in new technology industries – they serve a purpose in computer drives, electromechanical systems, healthcare devices or even sophisticated instruments,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of magnetic elements:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to shocks, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally reinforces its overall resistance,
- They lose power at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to moisture can rust. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is restricted,
- Safety concern due to small fragments may arise, especially if swallowed, which is significant in the protection of children. Additionally, miniature parts from these devices can complicate medical imaging when ingested,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Optimal lifting capacity of a neodymium magnet – what it depends on?
The given pulling force of the magnet represents the maximum force, determined in ideal conditions, namely:
- with the use of low-carbon steel plate serving as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a smooth surface
- with zero air gap
- with vertical force applied
- at room temperature
Magnet lifting force in use – key factors
Practical lifting force is dependent on elements, by priority:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured with the use of a steel plate with a smooth surface of optimal thickness (min. 20 mm), under vertically applied force, in contrast under shearing force the load capacity is reduced by as much as fivefold. Additionally, even a slight gap {between} the magnet’s surface and the plate decreases the load capacity.
Handle Neodymium Magnets with Caution
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Magnets may crack or crumble with careless connecting to each other. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.
Maintain neodymium magnets far from youngest children.
Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are highly susceptible to damage, leading to their cracking.
Magnets made of neodymium are extremely delicate, and by joining them in an uncontrolled manner, they will break. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.
Do not bring neodymium magnets close to GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Keep neodymium magnets away from the wallet, computer, and TV.
Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Exercise caution!
So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.