MPL 40x18x10 SH / N38 - lamellar magnet
lamellar magnet
Catalog no 020157
GTIN: 5906301811633
length [±0,1 mm]
40 mm
Width [±0,1 mm]
18 mm
Height [±0,1 mm]
10 mm
Weight
54 g
Magnetization Direction
↑ axial
Magnetic Induction
366.66 mT
Coating
[NiCuNi] nickel
33.83 ZŁ with VAT / pcs + price for transport
27.50 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate the price?
Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.
Orders placed by 14:00 are shipped the same day.
MPL 40x18x10 SH / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Due to their strength, flat magnets are regularly applied in products that need exceptional adhesion.
The standard temperature resistance of these magnets is 80°C, but depending on the dimensions, this value rises.
In addition, flat magnets usually have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, to increase their strength.
The magnet with the designation MPL 40x18x10 SH / N38 i.e. a magnetic strength 0 kg which weighs just 54 grams, making it the perfect choice for applications requiring a flat shape.
Contact surface: Thanks to their flat shape, flat magnets guarantee a larger contact surface with other components, which can be beneficial in applications requiring a stronger magnetic connection.
Technology applications: These magnets are often applied in different devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is necessary for their operation.
Mounting: This form's flat shape makes mounting, especially when it is necessary to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows designers a lot of flexibility in arranging them in devices, which is more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet may offer better stability, reducing the risk of shifting or rotating. It’s important to keep in mind that the optimal shape of the magnet depends on the given use and requirements. In some cases, other shapes, such as cylindrical or spherical, are a better choice.
Magnets have two main poles: north (N) and south (S), which attract each other when they are different. Poles of the same kind, such as two north poles, repel each other.
Thanks to this principle of operation, magnets are commonly used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them perfect for applications requiring powerful magnetic fields. Moreover, the strength of a magnet depends on its size and the material it is made of.
It should be noted that high temperatures can weaken the magnet's effect. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as compasses, credit cards and even electronic devices sensitive to magnetic fields. For this reason, it is important to exercise caution when using magnets.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from immense power, neodymium magnets have the following advantages:
- They do not lose strength over time. After 10 years, their power decreases by only ~1% (theoretically),
- They are highly resistant to demagnetization by external magnetic field,
- In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
- They possess very high magnetic induction on the surface of the magnet,
- Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
- Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in many variants of shapes or sizes, which expands the range of their possible uses.
- Key role in advanced technologically fields – find application in computer drives, electric drive mechanisms, medical equipment and very highly developed apparatuses.
Disadvantages of neodymium magnets:
- They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
- High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
- Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
- The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
- Health risk to health from tiny fragments of magnets can be dangerous, when accidentally ingested, which is crucial in the aspect of protecting young children. It's also worth noting that small elements of these magnets are able to be problematic in medical diagnosis when they are in the body.
Exercise Caution with Neodymium Magnets
Neodymium magnetic are delicate as well as can easily break as well as get damaged.
Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will crack. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Maintain neodymium magnets far from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to insert fingers between magnets or in their path when they attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can become demagnetized at high temperatures.
Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
People with pacemakers are advised to avoid neodymium magnets.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are the most powerful magnets ever invented. Their power can surprise you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Be careful!
To show why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.