Neodymiums – complete shape selection

Looking for massive power in small size? We offer complete range of disc, cylindrical and ring magnets. They are ideal for home use, garage and model making. Check our offer with fast shipping.

see full offer

Equipment for treasure hunters

Start your adventure involving underwater treasure hunting! Our specialized grips (F200, F400) provide grip certainty and immense power. Solid, corrosion-resistant housing and strong lines are reliable in any water.

find searching equipment

Professional threaded grips

Proven solutions for fixing non-invasive. Threaded grips (external or internal) guarantee instant organization of work on warehouses. Perfect for mounting lamps, detectors and ads.

check technical specs

🚀 Express processing: orders by 14:00 shipped immediately!

Dhit sp. z o.o.
Product available Ships in 2 days

MPL 40x18x10 SH / N38 - lamellar magnet

lamellar magnet

Catalog no 020157

GTIN/EAN: 5906301811633

5.00

length

40 mm [±0,1 mm]

Width

18 mm [±0,1 mm]

Height

10 mm [±0,1 mm]

Weight

54 g

Magnetization Direction

↑ axial

Load capacity

23.81 kg / 233.58 N

Magnetic Induction

366.66 mT / 3667 Gs

Coating

[NiCuNi] Nickel

36.29 with VAT / pcs + price for transport

29.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
29.50 ZŁ
36.29 ZŁ
price from 30 pcs
27.73 ZŁ
34.11 ZŁ
price from 90 pcs
25.96 ZŁ
31.93 ZŁ
Need advice?

Contact us by phone +48 22 499 98 98 if you prefer send us a note through inquiry form the contact form page.
Force as well as shape of a neodymium magnet can be tested with our online calculation tool.

Same-day shipping for orders placed before 14:00.

Product card - MPL 40x18x10 SH / N38 - lamellar magnet

Specification / characteristics - MPL 40x18x10 SH / N38 - lamellar magnet

properties
properties values
Cat. no. 020157
GTIN/EAN 5906301811633
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
length 40 mm [±0,1 mm]
Width 18 mm [±0,1 mm]
Height 10 mm [±0,1 mm]
Weight 54 g
Magnetization Direction ↑ axial
Load capacity ~ ? 23.81 kg / 233.58 N
Magnetic Induction ~ ? 366.66 mT / 3667 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MPL 40x18x10 SH / N38 - lamellar magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Physical modeling of the magnet - technical parameters

Presented values constitute the result of a mathematical calculation. Values are based on algorithms for the material Nd2Fe14B. Real-world conditions might slightly deviate from the simulation results. Use these calculations as a preliminary roadmap during assembly planning.

Table 1: Static force (force vs gap) - interaction chart
MPL 40x18x10 SH / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 3666 Gs
366.6 mT
23.81 kg / 52.49 pounds
23810.0 g / 233.6 N
crushing
1 mm 3399 Gs
339.9 mT
20.48 kg / 45.14 pounds
20476.1 g / 200.9 N
crushing
2 mm 3120 Gs
312.0 mT
17.25 kg / 38.02 pounds
17245.9 g / 169.2 N
crushing
3 mm 2841 Gs
284.1 mT
14.30 kg / 31.54 pounds
14304.1 g / 140.3 N
crushing
5 mm 2321 Gs
232.1 mT
9.55 kg / 21.05 pounds
9547.8 g / 93.7 N
strong
10 mm 1370 Gs
137.0 mT
3.32 kg / 7.33 pounds
3324.4 g / 32.6 N
strong
15 mm 833 Gs
83.3 mT
1.23 kg / 2.71 pounds
1229.0 g / 12.1 N
safe
20 mm 530 Gs
53.0 mT
0.50 kg / 1.10 pounds
498.1 g / 4.9 N
safe
30 mm 244 Gs
24.4 mT
0.11 kg / 0.23 pounds
105.3 g / 1.0 N
safe
50 mm 75 Gs
7.5 mT
0.01 kg / 0.02 pounds
9.9 g / 0.1 N
safe

Table 2: Shear load (wall)
MPL 40x18x10 SH / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 4.76 kg / 10.50 pounds
4762.0 g / 46.7 N
1 mm Stal (~0.2) 4.10 kg / 9.03 pounds
4096.0 g / 40.2 N
2 mm Stal (~0.2) 3.45 kg / 7.61 pounds
3450.0 g / 33.8 N
3 mm Stal (~0.2) 2.86 kg / 6.31 pounds
2860.0 g / 28.1 N
5 mm Stal (~0.2) 1.91 kg / 4.21 pounds
1910.0 g / 18.7 N
10 mm Stal (~0.2) 0.66 kg / 1.46 pounds
664.0 g / 6.5 N
15 mm Stal (~0.2) 0.25 kg / 0.54 pounds
246.0 g / 2.4 N
20 mm Stal (~0.2) 0.10 kg / 0.22 pounds
100.0 g / 1.0 N
30 mm Stal (~0.2) 0.02 kg / 0.05 pounds
22.0 g / 0.2 N
50 mm Stal (~0.2) 0.00 kg / 0.00 pounds
2.0 g / 0.0 N

Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MPL 40x18x10 SH / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
7.14 kg / 15.75 pounds
7143.0 g / 70.1 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
4.76 kg / 10.50 pounds
4762.0 g / 46.7 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
2.38 kg / 5.25 pounds
2381.0 g / 23.4 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
11.91 kg / 26.25 pounds
11905.0 g / 116.8 N

Table 4: Steel thickness (saturation) - power losses
MPL 40x18x10 SH / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
5%
1.19 kg / 2.62 pounds
1190.5 g / 11.7 N
1 mm
13%
2.98 kg / 6.56 pounds
2976.3 g / 29.2 N
2 mm
25%
5.95 kg / 13.12 pounds
5952.5 g / 58.4 N
3 mm
38%
8.93 kg / 19.68 pounds
8928.7 g / 87.6 N
5 mm
63%
14.88 kg / 32.81 pounds
14881.3 g / 146.0 N
10 mm
100%
23.81 kg / 52.49 pounds
23810.0 g / 233.6 N
11 mm
100%
23.81 kg / 52.49 pounds
23810.0 g / 233.6 N
12 mm
100%
23.81 kg / 52.49 pounds
23810.0 g / 233.6 N

Table 5: Thermal stability (stability) - thermal limit
MPL 40x18x10 SH / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 23.81 kg / 52.49 pounds
23810.0 g / 233.6 N
OK
40 °C -2.2% 23.29 kg / 51.34 pounds
23286.2 g / 228.4 N
OK
60 °C -4.4% 22.76 kg / 50.18 pounds
22762.4 g / 223.3 N
80 °C -6.6% 22.24 kg / 49.03 pounds
22238.5 g / 218.2 N
100 °C -28.8% 16.95 kg / 37.37 pounds
16952.7 g / 166.3 N

Table 6: Magnet-Magnet interaction (repulsion) - field range
MPL 40x18x10 SH / N38

Gap (mm) Attraction (kg/lbs) (N-S) Sliding Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 59.64 kg / 131.49 pounds
5 034 Gs
8.95 kg / 19.72 pounds
8947 g / 87.8 N
N/A
1 mm 55.50 kg / 122.35 pounds
7 072 Gs
8.32 kg / 18.35 pounds
8325 g / 81.7 N
49.95 kg / 110.12 pounds
~0 Gs
2 mm 51.29 kg / 113.08 pounds
6 799 Gs
7.69 kg / 16.96 pounds
7694 g / 75.5 N
46.16 kg / 101.77 pounds
~0 Gs
3 mm 47.18 kg / 104.01 pounds
6 520 Gs
7.08 kg / 15.60 pounds
7076 g / 69.4 N
42.46 kg / 93.61 pounds
~0 Gs
5 mm 39.41 kg / 86.88 pounds
5 959 Gs
5.91 kg / 13.03 pounds
5912 g / 58.0 N
35.47 kg / 78.20 pounds
~0 Gs
10 mm 23.92 kg / 52.73 pounds
4 643 Gs
3.59 kg / 7.91 pounds
3588 g / 35.2 N
21.53 kg / 47.46 pounds
~0 Gs
20 mm 8.33 kg / 18.36 pounds
2 739 Gs
1.25 kg / 2.75 pounds
1249 g / 12.3 N
7.49 kg / 16.52 pounds
~0 Gs
50 mm 0.55 kg / 1.22 pounds
705 Gs
0.08 kg / 0.18 pounds
83 g / 0.8 N
0.50 kg / 1.09 pounds
~0 Gs
60 mm 0.26 kg / 0.58 pounds
487 Gs
0.04 kg / 0.09 pounds
40 g / 0.4 N
0.24 kg / 0.52 pounds
~0 Gs
70 mm 0.13 kg / 0.30 pounds
348 Gs
0.02 kg / 0.04 pounds
20 g / 0.2 N
0.12 kg / 0.27 pounds
~0 Gs
80 mm 0.07 kg / 0.16 pounds
256 Gs
0.01 kg / 0.02 pounds
11 g / 0.1 N
0.07 kg / 0.14 pounds
~0 Gs
90 mm 0.04 kg / 0.09 pounds
194 Gs
0.01 kg / 0.01 pounds
6 g / 0.1 N
0.04 kg / 0.08 pounds
~0 Gs
100 mm 0.02 kg / 0.05 pounds
149 Gs
0.00 kg / 0.01 pounds
4 g / 0.0 N
0.02 kg / 0.05 pounds
~0 Gs

Table 7: Protective zones (implants) - precautionary measures
MPL 40x18x10 SH / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 14.0 cm
Hearing aid 10 Gs (1.0 mT) 11.0 cm
Timepiece 20 Gs (2.0 mT) 8.5 cm
Mobile device 40 Gs (4.0 mT) 6.5 cm
Car key 50 Gs (5.0 mT) 6.0 cm
Payment card 400 Gs (40.0 mT) 2.5 cm
HDD hard drive 600 Gs (60.0 mT) 2.0 cm

Table 8: Collisions (kinetic energy) - warning
MPL 40x18x10 SH / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 22.95 km/h
(6.38 m/s)
1.10 J
30 mm 36.78 km/h
(10.22 m/s)
2.82 J
50 mm 47.37 km/h
(13.16 m/s)
4.67 J
100 mm 66.97 km/h
(18.60 m/s)
9.34 J

Table 9: Surface protection spec
MPL 40x18x10 SH / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Pc)
MPL 40x18x10 SH / N38

Parameter Value SI Unit / Description
Magnetic Flux 26 060 Mx 260.6 µWb
Pc Coefficient 0.43 Low (Flat)

Table 11: Underwater work (magnet fishing)
MPL 40x18x10 SH / N38

Environment Effective steel pull Effect
Air (land) 23.81 kg Standard
Water (riverbed) 27.26 kg
(+3.45 kg buoyancy gain)
+14.5%
Corrosion warning: Standard nickel requires drying after every contact with moisture; lack of maintenance will lead to rust spots.
1. Wall mount (shear)

*Warning: On a vertical wall, the magnet holds just a fraction of its max power.

2. Efficiency vs thickness

*Thin steel (e.g. computer case) significantly limits the holding force.

3. Thermal stability

*For N38 material, the critical limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.43

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical specification and ecology
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 020157-2026
Quick Unit Converter
Force (pull)

Magnetic Induction

Check out also deals

Model MPL 40x18x10 SH / N38 features a flat shape and professional pulling force, making it an ideal solution for building separators and machines. As a magnetic bar with high power (approx. 23.81 kg), this product is available off-the-shelf from our warehouse in Poland. Furthermore, its Ni-Cu-Ni coating protects it against corrosion in standard operating conditions, giving it an aesthetic appearance.
Separating strong flat magnets requires a technique based on sliding (moving one relative to the other), rather than forceful pulling apart. To separate the MPL 40x18x10 SH / N38 model, firmly slide one magnet over the edge of the other until the attraction force decreases. We recommend extreme caution, because after separation, the magnets may want to violently snap back together, which threatens pinching the skin. Never use metal tools for prying, as the brittle NdFeB material may chip and damage your eyes.
They constitute a key element in the production of wind generators and material handling systems. Thanks to the flat surface and high force (approx. 23.81 kg), they are ideal as hidden locks in furniture making and mounting elements in automation. Their rectangular shape facilitates precise gluing into milled sockets in wood or plastic.
For mounting flat magnets MPL 40x18x10 SH / N38, we recommend utilizing strong epoxy glues (e.g., UHU Endfest, Distal), which ensure a durable bond with metal or plastic. For lighter applications or mounting on smooth surfaces, branded foam tape (e.g., 3M VHB) will work, provided the surface is perfectly degreased. Avoid chemically aggressive glues or hot glue, which can demagnetize neodymium (above 80°C).
The magnetic axis runs through the shortest dimension, which is typical for gripper magnets. In practice, this means that this magnet has the greatest attraction force on its main planes (40x18 mm), which is ideal for flat mounting. Such a pole arrangement ensures maximum holding capacity when pressing against the sheet, creating a closed magnetic circuit.
The presented product is a neodymium magnet with precisely defined parameters: 40 mm (length), 18 mm (width), and 10 mm (thickness). The key parameter here is the lifting capacity amounting to approximately 23.81 kg (force ~233.58 N), which, with such a flat shape, proves the high power of the material. The protective [NiCuNi] coating secures the magnet against corrosion.

Advantages as well as disadvantages of rare earth magnets.

Pros

Besides their durability, neodymium magnets are valued for these benefits:
  • They virtually do not lose power, because even after 10 years the performance loss is only ~1% (according to literature),
  • Neodymium magnets are highly resistant to loss of magnetic properties caused by external magnetic fields,
  • By using a decorative layer of gold, the element gains an proper look,
  • Neodymium magnets deliver maximum magnetic induction on a small surface, which ensures high operational effectiveness,
  • Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
  • Possibility of custom forming as well as adapting to defined conditions,
  • Key role in modern industrial fields – they are used in magnetic memories, drive modules, diagnostic systems, as well as technologically advanced constructions.
  • Relatively small size with high pulling force – neodymium magnets offer high power in tiny dimensions, which makes them useful in miniature devices

Limitations

What to avoid - cons of neodymium magnets and ways of using them
  • To avoid cracks upon strong impacts, we suggest using special steel housings. Such a solution protects the magnet and simultaneously increases its durability.
  • When exposed to high temperature, neodymium magnets suffer a drop in strength. Often, when the temperature exceeds 80°C, their power decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
  • They oxidize in a humid environment. For use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
  • Due to limitations in producing nuts and complex shapes in magnets, we recommend using cover - magnetic holder.
  • Possible danger to health – tiny shards of magnets are risky, if swallowed, which is particularly important in the context of child safety. Additionally, small elements of these devices are able to complicate diagnosis medical after entering the body.
  • Due to neodymium price, their price is relatively high,

Holding force characteristics

Highest magnetic holding forcewhat contributes to it?

Magnet power is the result of a measurement for optimal configuration, taking into account:
  • with the contact of a yoke made of special test steel, guaranteeing full magnetic saturation
  • possessing a massiveness of min. 10 mm to avoid saturation
  • with a plane cleaned and smooth
  • under conditions of gap-free contact (metal-to-metal)
  • under vertical application of breakaway force (90-degree angle)
  • at conditions approx. 20°C

Practical lifting capacity: influencing factors

Bear in mind that the magnet holding may be lower influenced by elements below, in order of importance:
  • Distance – existence of any layer (paint, tape, air) interrupts the magnetic circuit, which lowers capacity steeply (even by 50% at 0.5 mm).
  • Pull-off angle – remember that the magnet has greatest strength perpendicularly. Under shear forces, the capacity drops significantly, often to levels of 20-30% of the maximum value.
  • Steel thickness – too thin plate causes magnetic saturation, causing part of the power to be wasted into the air.
  • Chemical composition of the base – mild steel attracts best. Alloy admixtures reduce magnetic permeability and lifting capacity.
  • Plate texture – ground elements guarantee perfect abutment, which improves force. Rough surfaces reduce efficiency.
  • Temperature influence – high temperature weakens pulling force. Exceeding the limit temperature can permanently damage the magnet.

Lifting capacity testing was carried out on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under parallel forces the lifting capacity is smaller. Additionally, even a minimal clearance between the magnet’s surface and the plate reduces the lifting capacity.

Safe handling of NdFeB magnets
Allergy Warning

Some people experience a contact allergy to nickel, which is the standard coating for NdFeB magnets. Frequent touching may cause dermatitis. We suggest use safety gloves.

Adults only

Absolutely store magnets away from children. Ingestion danger is high, and the consequences of magnets connecting inside the body are very dangerous.

Danger to pacemakers

For implant holders: Powerful magnets disrupt medical devices. Keep minimum 30 cm distance or request help to handle the magnets.

Fragile material

Neodymium magnets are sintered ceramics, which means they are fragile like glass. Collision of two magnets will cause them breaking into shards.

Do not overheat magnets

Regular neodymium magnets (N-type) lose power when the temperature surpasses 80°C. This process is irreversible.

Serious injuries

Pinching hazard: The pulling power is so great that it can result in hematomas, crushing, and even bone fractures. Protective gloves are recommended.

Respect the power

Handle magnets with awareness. Their immense force can surprise even professionals. Stay alert and do not underestimate their power.

Precision electronics

Navigation devices and smartphones are extremely sensitive to magnetism. Close proximity with a powerful NdFeB magnet can permanently damage the sensors in your phone.

Dust is flammable

Drilling and cutting of neodymium magnets poses a fire risk. Neodymium dust oxidizes rapidly with oxygen and is difficult to extinguish.

Electronic hazard

Device Safety: Neodymium magnets can damage payment cards and sensitive devices (heart implants, hearing aids, mechanical watches).

Security! Looking for details? Read our article: Are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98