MPL 40x18x10 SH / N38 - lamellar magnet
lamellar magnet
Catalog no 020157
GTIN/EAN: 5906301811633
length
40 mm [±0,1 mm]
Width
18 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
54 g
Magnetization Direction
↑ axial
Load capacity
23.81 kg / 233.58 N
Magnetic Induction
366.66 mT / 3667 Gs
Coating
[NiCuNi] Nickel
36.29 ZŁ with VAT / pcs + price for transport
29.50 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 22 499 98 98
or let us know via
contact form
the contact section.
Lifting power along with form of neodymium magnets can be analyzed on our
online calculation tool.
Orders placed before 14:00 will be shipped the same business day.
Technical of the product - MPL 40x18x10 SH / N38 - lamellar magnet
Specification / characteristics - MPL 40x18x10 SH / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020157 |
| GTIN/EAN | 5906301811633 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 40 mm [±0,1 mm] |
| Width | 18 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 54 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 23.81 kg / 233.58 N |
| Magnetic Induction ~ ? | 366.66 mT / 3667 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical modeling of the product - report
Presented data represent the outcome of a engineering simulation. Values are based on models for the material Nd2Fe14B. Actual parameters may differ. Please consider these data as a supplementary guide for designers.
Table 1: Static pull force (pull vs gap) - interaction chart
MPL 40x18x10 SH / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3666 Gs
366.6 mT
|
23.81 kg / 52.49 pounds
23810.0 g / 233.6 N
|
dangerous! |
| 1 mm |
3399 Gs
339.9 mT
|
20.48 kg / 45.14 pounds
20476.1 g / 200.9 N
|
dangerous! |
| 2 mm |
3120 Gs
312.0 mT
|
17.25 kg / 38.02 pounds
17245.9 g / 169.2 N
|
dangerous! |
| 3 mm |
2841 Gs
284.1 mT
|
14.30 kg / 31.54 pounds
14304.1 g / 140.3 N
|
dangerous! |
| 5 mm |
2321 Gs
232.1 mT
|
9.55 kg / 21.05 pounds
9547.8 g / 93.7 N
|
warning |
| 10 mm |
1370 Gs
137.0 mT
|
3.32 kg / 7.33 pounds
3324.4 g / 32.6 N
|
warning |
| 15 mm |
833 Gs
83.3 mT
|
1.23 kg / 2.71 pounds
1229.0 g / 12.1 N
|
low risk |
| 20 mm |
530 Gs
53.0 mT
|
0.50 kg / 1.10 pounds
498.1 g / 4.9 N
|
low risk |
| 30 mm |
244 Gs
24.4 mT
|
0.11 kg / 0.23 pounds
105.3 g / 1.0 N
|
low risk |
| 50 mm |
75 Gs
7.5 mT
|
0.01 kg / 0.02 pounds
9.9 g / 0.1 N
|
low risk |
Table 2: Sliding load (vertical surface)
MPL 40x18x10 SH / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.76 kg / 10.50 pounds
4762.0 g / 46.7 N
|
| 1 mm | Stal (~0.2) |
4.10 kg / 9.03 pounds
4096.0 g / 40.2 N
|
| 2 mm | Stal (~0.2) |
3.45 kg / 7.61 pounds
3450.0 g / 33.8 N
|
| 3 mm | Stal (~0.2) |
2.86 kg / 6.31 pounds
2860.0 g / 28.1 N
|
| 5 mm | Stal (~0.2) |
1.91 kg / 4.21 pounds
1910.0 g / 18.7 N
|
| 10 mm | Stal (~0.2) |
0.66 kg / 1.46 pounds
664.0 g / 6.5 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 0.54 pounds
246.0 g / 2.4 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 0.22 pounds
100.0 g / 1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.05 pounds
22.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
2.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MPL 40x18x10 SH / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
7.14 kg / 15.75 pounds
7143.0 g / 70.1 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.76 kg / 10.50 pounds
4762.0 g / 46.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
2.38 kg / 5.25 pounds
2381.0 g / 23.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
11.91 kg / 26.25 pounds
11905.0 g / 116.8 N
|
Table 4: Material efficiency (saturation) - power losses
MPL 40x18x10 SH / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.19 kg / 2.62 pounds
1190.5 g / 11.7 N
|
| 1 mm |
|
2.98 kg / 6.56 pounds
2976.3 g / 29.2 N
|
| 2 mm |
|
5.95 kg / 13.12 pounds
5952.5 g / 58.4 N
|
| 3 mm |
|
8.93 kg / 19.68 pounds
8928.7 g / 87.6 N
|
| 5 mm |
|
14.88 kg / 32.81 pounds
14881.3 g / 146.0 N
|
| 10 mm |
|
23.81 kg / 52.49 pounds
23810.0 g / 233.6 N
|
| 11 mm |
|
23.81 kg / 52.49 pounds
23810.0 g / 233.6 N
|
| 12 mm |
|
23.81 kg / 52.49 pounds
23810.0 g / 233.6 N
|
Table 5: Thermal resistance (material behavior) - thermal limit
MPL 40x18x10 SH / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
23.81 kg / 52.49 pounds
23810.0 g / 233.6 N
|
OK |
| 40 °C | -2.2% |
23.29 kg / 51.34 pounds
23286.2 g / 228.4 N
|
OK |
| 60 °C | -4.4% |
22.76 kg / 50.18 pounds
22762.4 g / 223.3 N
|
|
| 80 °C | -6.6% |
22.24 kg / 49.03 pounds
22238.5 g / 218.2 N
|
|
| 100 °C | -28.8% |
16.95 kg / 37.37 pounds
16952.7 g / 166.3 N
|
Table 6: Two magnets (attraction) - forces in the system
MPL 40x18x10 SH / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
59.64 kg / 131.49 pounds
5 034 Gs
|
8.95 kg / 19.72 pounds
8947 g / 87.8 N
|
N/A |
| 1 mm |
55.50 kg / 122.35 pounds
7 072 Gs
|
8.32 kg / 18.35 pounds
8325 g / 81.7 N
|
49.95 kg / 110.12 pounds
~0 Gs
|
| 2 mm |
51.29 kg / 113.08 pounds
6 799 Gs
|
7.69 kg / 16.96 pounds
7694 g / 75.5 N
|
46.16 kg / 101.77 pounds
~0 Gs
|
| 3 mm |
47.18 kg / 104.01 pounds
6 520 Gs
|
7.08 kg / 15.60 pounds
7076 g / 69.4 N
|
42.46 kg / 93.61 pounds
~0 Gs
|
| 5 mm |
39.41 kg / 86.88 pounds
5 959 Gs
|
5.91 kg / 13.03 pounds
5912 g / 58.0 N
|
35.47 kg / 78.20 pounds
~0 Gs
|
| 10 mm |
23.92 kg / 52.73 pounds
4 643 Gs
|
3.59 kg / 7.91 pounds
3588 g / 35.2 N
|
21.53 kg / 47.46 pounds
~0 Gs
|
| 20 mm |
8.33 kg / 18.36 pounds
2 739 Gs
|
1.25 kg / 2.75 pounds
1249 g / 12.3 N
|
7.49 kg / 16.52 pounds
~0 Gs
|
| 50 mm |
0.55 kg / 1.22 pounds
705 Gs
|
0.08 kg / 0.18 pounds
83 g / 0.8 N
|
0.50 kg / 1.09 pounds
~0 Gs
|
| 60 mm |
0.26 kg / 0.58 pounds
487 Gs
|
0.04 kg / 0.09 pounds
40 g / 0.4 N
|
0.24 kg / 0.52 pounds
~0 Gs
|
| 70 mm |
0.13 kg / 0.30 pounds
348 Gs
|
0.02 kg / 0.04 pounds
20 g / 0.2 N
|
0.12 kg / 0.27 pounds
~0 Gs
|
| 80 mm |
0.07 kg / 0.16 pounds
256 Gs
|
0.01 kg / 0.02 pounds
11 g / 0.1 N
|
0.07 kg / 0.14 pounds
~0 Gs
|
| 90 mm |
0.04 kg / 0.09 pounds
194 Gs
|
0.01 kg / 0.01 pounds
6 g / 0.1 N
|
0.04 kg / 0.08 pounds
~0 Gs
|
| 100 mm |
0.02 kg / 0.05 pounds
149 Gs
|
0.00 kg / 0.01 pounds
4 g / 0.0 N
|
0.02 kg / 0.05 pounds
~0 Gs
|
Table 7: Safety (HSE) (electronics) - precautionary measures
MPL 40x18x10 SH / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 14.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 11.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 8.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 6.5 cm |
| Remote | 50 Gs (5.0 mT) | 6.0 cm |
| Payment card | 400 Gs (40.0 mT) | 2.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 2.0 cm |
Table 8: Dynamics (cracking risk) - collision effects
MPL 40x18x10 SH / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
22.95 km/h
(6.38 m/s)
|
1.10 J | |
| 30 mm |
36.78 km/h
(10.22 m/s)
|
2.82 J | |
| 50 mm |
47.37 km/h
(13.16 m/s)
|
4.67 J | |
| 100 mm |
66.97 km/h
(18.60 m/s)
|
9.34 J |
Table 9: Surface protection spec
MPL 40x18x10 SH / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 40x18x10 SH / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 26 060 Mx | 260.6 µWb |
| Pc Coefficient | 0.43 | Low (Flat) |
Table 11: Submerged application
MPL 40x18x10 SH / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 23.81 kg | Standard |
| Water (riverbed) |
27.26 kg
(+3.45 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Note: On a vertical wall, the magnet holds just approx. 20-30% of its perpendicular strength.
2. Plate thickness effect
*Thin steel (e.g. computer case) significantly limits the holding force.
3. Temperature resistance
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.43
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other proposals
Advantages as well as disadvantages of rare earth magnets.
Benefits
- They have stable power, and over nearly 10 years their performance decreases symbolically – ~1% (according to theory),
- They show high resistance to demagnetization induced by external disturbances,
- By applying a smooth layer of nickel, the element gains an elegant look,
- The surface of neodymium magnets generates a powerful magnetic field – this is one of their assets,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
- Possibility of precise forming as well as optimizing to complex applications,
- Huge importance in high-tech industry – they find application in hard drives, brushless drives, advanced medical instruments, as well as other advanced devices.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in tiny dimensions, which enables their usage in compact constructions
Disadvantages
- They are fragile upon heavy impacts. To avoid cracks, it is worth protecting magnets using a steel holder. Such protection not only protects the magnet but also improves its resistance to damage
- Neodymium magnets decrease their power under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
- They oxidize in a humid environment - during use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
- We recommend a housing - magnetic holder, due to difficulties in creating threads inside the magnet and complicated forms.
- Health risk resulting from small fragments of magnets pose a threat, if swallowed, which becomes key in the context of child safety. Furthermore, tiny parts of these products are able to complicate diagnosis medical in case of swallowing.
- High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which can limit application in large quantities
Holding force characteristics
Magnetic strength at its maximum – what it depends on?
- with the contact of a sheet made of low-carbon steel, ensuring full magnetic saturation
- whose transverse dimension is min. 10 mm
- with an ideally smooth touching surface
- under conditions of gap-free contact (surface-to-surface)
- during pulling in a direction vertical to the mounting surface
- in stable room temperature
Determinants of lifting force in real conditions
- Space between magnet and steel – even a fraction of a millimeter of separation (caused e.g. by veneer or unevenness) diminishes the pulling force, often by half at just 0.5 mm.
- Force direction – declared lifting capacity refers to pulling vertically. When attempting to slide, the magnet holds much less (typically approx. 20-30% of maximum force).
- Plate thickness – insufficiently thick sheet causes magnetic saturation, causing part of the flux to be wasted into the air.
- Steel grade – the best choice is high-permeability steel. Stainless steels may generate lower lifting capacity.
- Base smoothness – the more even the plate, the better the adhesion and stronger the hold. Roughness creates an air distance.
- Heat – NdFeB sinters have a negative temperature coefficient. When it is hot they lose power, and in frost they can be stronger (up to a certain limit).
Lifting capacity testing was conducted on a smooth plate of optimal thickness, under a perpendicular pulling force, whereas under parallel forces the holding force is lower. Moreover, even a slight gap between the magnet and the plate reduces the holding force.
Warnings
Threat to electronics
Do not bring magnets close to a purse, laptop, or screen. The magnetism can destroy these devices and wipe information from cards.
Pacemakers
For implant holders: Strong magnetic fields disrupt electronics. Keep at least 30 cm distance or request help to work with the magnets.
Do not underestimate power
Before use, check safety instructions. Sudden snapping can break the magnet or hurt your hand. Be predictive.
Hand protection
Mind your fingers. Two large magnets will snap together instantly with a force of massive weight, crushing anything in their path. Exercise extreme caution!
Keep away from electronics
A strong magnetic field negatively affects the operation of compasses in phones and GPS navigation. Keep magnets close to a device to avoid breaking the sensors.
Nickel coating and allergies
It is widely known that the nickel plating (the usual finish) is a strong allergen. If you have an allergy, avoid direct skin contact and select coated magnets.
No play value
Absolutely store magnets out of reach of children. Choking hazard is significant, and the consequences of magnets connecting inside the body are fatal.
Do not overheat magnets
Keep cool. NdFeB magnets are sensitive to temperature. If you need resistance above 80°C, look for special high-temperature series (H, SH, UH).
Risk of cracking
NdFeB magnets are ceramic materials, which means they are prone to chipping. Clashing of two magnets leads to them shattering into small pieces.
Machining danger
Drilling and cutting of NdFeB material carries a risk of fire risk. Magnetic powder oxidizes rapidly with oxygen and is difficult to extinguish.
