Neodymium magnets: strength you're looking for

Want to buy really powerful magnets? Our range includes wide selection of disc, cylindrical and ring magnets. Best choice for home use, garage and industrial tasks. Check our offer with fast shipping.

see price list and dimensions

Magnet fishing sets (hobbyists)

Start your adventure with treasure salvaging! Our specialized grips (F200, F400) provide grip certainty and huge lifting capacity. Solid, corrosion-resistant housing and strong lines are reliable in any water.

choose your water magnet

Magnetic solutions for business

Proven solutions for mounting non-invasive. Threaded grips (M8, M10, M12) provide instant organization of work on production halls. Perfect for mounting lamps, sensors and banners.

see available threads

🚀 Express processing: orders by 14:00 shipped immediately!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MPL 40x18x10 SH / N38 - lamellar magnet

lamellar magnet

Catalog no 020157

GTIN/EAN: 5906301811633

5.00

length

40 mm [±0,1 mm]

Width

18 mm [±0,1 mm]

Height

10 mm [±0,1 mm]

Weight

54 g

Magnetization Direction

↑ axial

Load capacity

23.81 kg / 233.58 N

Magnetic Induction

366.66 mT / 3667 Gs

Coating

[NiCuNi] Nickel

36.29 with VAT / pcs + price for transport

29.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
29.50 ZŁ
36.29 ZŁ
price from 30 pcs
27.73 ZŁ
34.11 ZŁ
price from 90 pcs
25.96 ZŁ
31.93 ZŁ
Not sure about your choice?

Call us +48 888 99 98 98 alternatively let us know via our online form the contact form page.
Weight as well as form of a magnet can be checked on our modular calculator.

Order by 14:00 and we’ll ship today!

Technical details - MPL 40x18x10 SH / N38 - lamellar magnet

Specification / characteristics - MPL 40x18x10 SH / N38 - lamellar magnet

properties
properties values
Cat. no. 020157
GTIN/EAN 5906301811633
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
length 40 mm [±0,1 mm]
Width 18 mm [±0,1 mm]
Height 10 mm [±0,1 mm]
Weight 54 g
Magnetization Direction ↑ axial
Load capacity ~ ? 23.81 kg / 233.58 N
Magnetic Induction ~ ? 366.66 mT / 3667 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MPL 40x18x10 SH / N38 - lamellar magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Technical modeling of the magnet - technical parameters

The following information represent the direct effect of a mathematical calculation. Values were calculated on algorithms for the class Nd2Fe14B. Actual performance might slightly differ. Use these calculations as a reference point when designing systems.

Table 1: Static pull force (pull vs distance) - characteristics
MPL 40x18x10 SH / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 3666 Gs
366.6 mT
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
crushing
1 mm 3399 Gs
339.9 mT
20.48 kg / 45.14 lbs
20476.1 g / 200.9 N
crushing
2 mm 3120 Gs
312.0 mT
17.25 kg / 38.02 lbs
17245.9 g / 169.2 N
crushing
3 mm 2841 Gs
284.1 mT
14.30 kg / 31.54 lbs
14304.1 g / 140.3 N
crushing
5 mm 2321 Gs
232.1 mT
9.55 kg / 21.05 lbs
9547.8 g / 93.7 N
strong
10 mm 1370 Gs
137.0 mT
3.32 kg / 7.33 lbs
3324.4 g / 32.6 N
strong
15 mm 833 Gs
83.3 mT
1.23 kg / 2.71 lbs
1229.0 g / 12.1 N
weak grip
20 mm 530 Gs
53.0 mT
0.50 kg / 1.10 lbs
498.1 g / 4.9 N
weak grip
30 mm 244 Gs
24.4 mT
0.11 kg / 0.23 lbs
105.3 g / 1.0 N
weak grip
50 mm 75 Gs
7.5 mT
0.01 kg / 0.02 lbs
9.9 g / 0.1 N
weak grip

Table 2: Vertical hold (wall)
MPL 40x18x10 SH / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 4.76 kg / 10.50 lbs
4762.0 g / 46.7 N
1 mm Stal (~0.2) 4.10 kg / 9.03 lbs
4096.0 g / 40.2 N
2 mm Stal (~0.2) 3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
3 mm Stal (~0.2) 2.86 kg / 6.31 lbs
2860.0 g / 28.1 N
5 mm Stal (~0.2) 1.91 kg / 4.21 lbs
1910.0 g / 18.7 N
10 mm Stal (~0.2) 0.66 kg / 1.46 lbs
664.0 g / 6.5 N
15 mm Stal (~0.2) 0.25 kg / 0.54 lbs
246.0 g / 2.4 N
20 mm Stal (~0.2) 0.10 kg / 0.22 lbs
100.0 g / 1.0 N
30 mm Stal (~0.2) 0.02 kg / 0.05 lbs
22.0 g / 0.2 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N

Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MPL 40x18x10 SH / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
7.14 kg / 15.75 lbs
7143.0 g / 70.1 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
4.76 kg / 10.50 lbs
4762.0 g / 46.7 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
2.38 kg / 5.25 lbs
2381.0 g / 23.4 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
11.91 kg / 26.25 lbs
11905.0 g / 116.8 N

Table 4: Steel thickness (substrate influence) - power losses
MPL 40x18x10 SH / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
5%
1.19 kg / 2.62 lbs
1190.5 g / 11.7 N
1 mm
13%
2.98 kg / 6.56 lbs
2976.3 g / 29.2 N
2 mm
25%
5.95 kg / 13.12 lbs
5952.5 g / 58.4 N
3 mm
38%
8.93 kg / 19.68 lbs
8928.7 g / 87.6 N
5 mm
63%
14.88 kg / 32.81 lbs
14881.3 g / 146.0 N
10 mm
100%
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
11 mm
100%
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
12 mm
100%
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N

Table 5: Thermal resistance (material behavior) - resistance threshold
MPL 40x18x10 SH / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
OK
40 °C -2.2% 23.29 kg / 51.34 lbs
23286.2 g / 228.4 N
OK
60 °C -4.4% 22.76 kg / 50.18 lbs
22762.4 g / 223.3 N
80 °C -6.6% 22.24 kg / 49.03 lbs
22238.5 g / 218.2 N
100 °C -28.8% 16.95 kg / 37.37 lbs
16952.7 g / 166.3 N

Table 6: Magnet-Magnet interaction (attraction) - field collision
MPL 40x18x10 SH / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Strength (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 59.64 kg / 131.49 lbs
5 034 Gs
8.95 kg / 19.72 lbs
8947 g / 87.8 N
N/A
1 mm 55.50 kg / 122.35 lbs
7 072 Gs
8.32 kg / 18.35 lbs
8325 g / 81.7 N
49.95 kg / 110.12 lbs
~0 Gs
2 mm 51.29 kg / 113.08 lbs
6 799 Gs
7.69 kg / 16.96 lbs
7694 g / 75.5 N
46.16 kg / 101.77 lbs
~0 Gs
3 mm 47.18 kg / 104.01 lbs
6 520 Gs
7.08 kg / 15.60 lbs
7076 g / 69.4 N
42.46 kg / 93.61 lbs
~0 Gs
5 mm 39.41 kg / 86.88 lbs
5 959 Gs
5.91 kg / 13.03 lbs
5912 g / 58.0 N
35.47 kg / 78.20 lbs
~0 Gs
10 mm 23.92 kg / 52.73 lbs
4 643 Gs
3.59 kg / 7.91 lbs
3588 g / 35.2 N
21.53 kg / 47.46 lbs
~0 Gs
20 mm 8.33 kg / 18.36 lbs
2 739 Gs
1.25 kg / 2.75 lbs
1249 g / 12.3 N
7.49 kg / 16.52 lbs
~0 Gs
50 mm 0.55 kg / 1.22 lbs
705 Gs
0.08 kg / 0.18 lbs
83 g / 0.8 N
0.50 kg / 1.09 lbs
~0 Gs
60 mm 0.26 kg / 0.58 lbs
487 Gs
0.04 kg / 0.09 lbs
40 g / 0.4 N
0.24 kg / 0.52 lbs
~0 Gs
70 mm 0.13 kg / 0.30 lbs
348 Gs
0.02 kg / 0.04 lbs
20 g / 0.2 N
0.12 kg / 0.27 lbs
~0 Gs
80 mm 0.07 kg / 0.16 lbs
256 Gs
0.01 kg / 0.02 lbs
11 g / 0.1 N
0.07 kg / 0.14 lbs
~0 Gs
90 mm 0.04 kg / 0.09 lbs
194 Gs
0.01 kg / 0.01 lbs
6 g / 0.1 N
0.04 kg / 0.08 lbs
~0 Gs
100 mm 0.02 kg / 0.05 lbs
149 Gs
0.00 kg / 0.01 lbs
4 g / 0.0 N
0.02 kg / 0.05 lbs
~0 Gs

Table 7: Hazards (electronics) - warnings
MPL 40x18x10 SH / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 14.0 cm
Hearing aid 10 Gs (1.0 mT) 11.0 cm
Timepiece 20 Gs (2.0 mT) 8.5 cm
Mobile device 40 Gs (4.0 mT) 6.5 cm
Remote 50 Gs (5.0 mT) 6.0 cm
Payment card 400 Gs (40.0 mT) 2.5 cm
HDD hard drive 600 Gs (60.0 mT) 2.0 cm

Table 8: Impact energy (cracking risk) - warning
MPL 40x18x10 SH / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 22.95 km/h
(6.38 m/s)
1.10 J
30 mm 36.78 km/h
(10.22 m/s)
2.82 J
50 mm 47.37 km/h
(13.16 m/s)
4.67 J
100 mm 66.97 km/h
(18.60 m/s)
9.34 J

Table 9: Surface protection spec
MPL 40x18x10 SH / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Pc)
MPL 40x18x10 SH / N38

Parameter Value SI Unit / Description
Magnetic Flux 26 060 Mx 260.6 µWb
Pc Coefficient 0.43 Low (Flat)

Table 11: Hydrostatics and buoyancy
MPL 40x18x10 SH / N38

Environment Effective steel pull Effect
Air (land) 23.81 kg Standard
Water (riverbed) 27.26 kg
(+3.45 kg buoyancy gain)
+14.5%
Warning: Remember to wipe the magnet thoroughly after removing it from water and apply a protective layer (e.g., oil) to avoid corrosion.
1. Vertical hold

*Caution: On a vertical surface, the magnet holds just a fraction of its max power.

2. Efficiency vs thickness

*Thin steel (e.g. computer case) drastically reduces the holding force.

3. Heat tolerance

*For standard magnets, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.43

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Elemental analysis
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Sustainability
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 020157-2026
Magnet Unit Converter
Force (pull)

Magnetic Induction

Other deals

This product is a very powerful plate magnet made of NdFeB material, which, with dimensions of 40x18x10 mm and a weight of 54 g, guarantees premium class connection. As a block magnet with high power (approx. 23.81 kg), this product is available immediately from our warehouse in Poland. Furthermore, its Ni-Cu-Ni coating protects it against corrosion in standard operating conditions, giving it an aesthetic appearance.
The key to success is shifting the magnets along their largest connection plane (using e.g., the edge of a table), which is easier than trying to tear them apart directly. To separate the MPL 40x18x10 SH / N38 model, firmly slide one magnet over the edge of the other until the attraction force decreases. We recommend care, because after separation, the magnets may want to violently snap back together, which threatens pinching the skin. Never use metal tools for prying, as the brittle NdFeB material may chip and damage your eyes.
They constitute a key element in the production of generators and material handling systems. Thanks to the flat surface and high force (approx. 23.81 kg), they are ideal as closers in furniture making and mounting elements in automation. Customers often choose this model for hanging tools on strips and for advanced DIY and modeling projects, where precision and power count.
Cyanoacrylate glues (super glue type) are good only for small magnets; for larger plates, we recommend resins. Double-sided tape cushions vibrations, which is an advantage when mounting in moving elements. Remember to roughen and wash the magnet surface before gluing, which significantly increases the adhesion of the glue to the nickel coating.
The magnetic axis runs through the shortest dimension, which is typical for gripper magnets. Thanks to this, it works best when "sticking" to sheet metal or another magnet with a large surface area. This is the most popular configuration for block magnets used in separators and holders.
The presented product is a neodymium magnet with precisely defined parameters: 40 mm (length), 18 mm (width), and 10 mm (thickness). It is a magnetic block with dimensions 40x18x10 mm and a self-weight of 54 g, ready to work at temperatures up to 80°C. The product meets the standards for N38 grade magnets.

Advantages and disadvantages of neodymium magnets.

Pros

Besides their tremendous field intensity, neodymium magnets offer the following advantages:
  • They do not lose strength, even after nearly ten years – the reduction in lifting capacity is only ~1% (according to tests),
  • They maintain their magnetic properties even under strong external field,
  • Thanks to the reflective finish, the surface of Ni-Cu-Ni, gold-plated, or silver gives an visually attractive appearance,
  • They show high magnetic induction at the operating surface, which increases their power,
  • Thanks to resistance to high temperature, they can operate (depending on the shape) even at temperatures up to 230°C and higher...
  • Possibility of exact shaping as well as adapting to complex requirements,
  • Key role in modern technologies – they serve a role in data components, brushless drives, medical devices, and multitasking production systems.
  • Compactness – despite small sizes they generate large force, making them ideal for precision applications

Disadvantages

Problematic aspects of neodymium magnets: tips and applications.
  • Brittleness is one of their disadvantages. Upon intense impact they can break. We recommend keeping them in a steel housing, which not only secures them against impacts but also increases their durability
  • When exposed to high temperature, neodymium magnets experience a drop in force. Often, when the temperature exceeds 80°C, their power decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
  • They oxidize in a humid environment - during use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
  • Due to limitations in producing threads and complex shapes in magnets, we propose using casing - magnetic mount.
  • Possible danger to health – tiny shards of magnets pose a threat, if swallowed, which gains importance in the context of child health protection. It is also worth noting that small components of these devices can disrupt the diagnostic process medical when they are in the body.
  • Due to complex production process, their price exceeds standard values,

Holding force characteristics

Optimal lifting capacity of a neodymium magnetwhat contributes to it?

Holding force of 23.81 kg is a result of laboratory testing executed under the following configuration:
  • using a sheet made of high-permeability steel, acting as a ideal flux conductor
  • whose transverse dimension is min. 10 mm
  • with a plane perfectly flat
  • with zero gap (without paint)
  • under perpendicular application of breakaway force (90-degree angle)
  • at room temperature

Lifting capacity in practice – influencing factors

In real-world applications, the actual lifting capacity results from many variables, presented from most significant:
  • Clearance – existence of foreign body (paint, dirt, air) interrupts the magnetic circuit, which reduces capacity rapidly (even by 50% at 0.5 mm).
  • Loading method – declared lifting capacity refers to detachment vertically. When slipping, the magnet exhibits much less (often approx. 20-30% of maximum force).
  • Base massiveness – too thin sheet does not close the flux, causing part of the flux to be escaped to the other side.
  • Metal type – different alloys attracts identically. High carbon content worsen the attraction effect.
  • Smoothness – ideal contact is obtained only on smooth steel. Rough texture create air cushions, weakening the magnet.
  • Thermal conditions – NdFeB sinters have a negative temperature coefficient. At higher temperatures they lose power, and in frost gain strength (up to a certain limit).

Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the lifting capacity is smaller. In addition, even a slight gap between the magnet’s surface and the plate lowers the load capacity.

Safety rules for work with neodymium magnets
Handling guide

Before use, read the rules. Sudden snapping can destroy the magnet or injure your hand. Think ahead.

Maximum temperature

Monitor thermal conditions. Heating the magnet above 80 degrees Celsius will ruin its properties and pulling force.

Machining danger

Combustion risk: Rare earth powder is highly flammable. Avoid machining magnets in home conditions as this risks ignition.

Swallowing risk

These products are not toys. Accidental ingestion of several magnets can lead to them attracting across intestines, which constitutes a critical condition and requires immediate surgery.

Medical implants

Individuals with a pacemaker must keep an large gap from magnets. The magnetic field can disrupt the functioning of the life-saving device.

Skin irritation risks

Medical facts indicate that nickel (the usual finish) is a common allergen. For allergy sufferers, avoid direct skin contact or choose versions in plastic housing.

Pinching danger

Pinching hazard: The attraction force is so great that it can cause hematomas, pinching, and broken bones. Protective gloves are recommended.

Compass and GPS

GPS units and mobile phones are extremely susceptible to magnetic fields. Close proximity with a powerful NdFeB magnet can ruin the internal compass in your phone.

Electronic hazard

Device Safety: Neodymium magnets can damage payment cards and delicate electronics (pacemakers, medical aids, mechanical watches).

Material brittleness

Despite metallic appearance, neodymium is brittle and cannot withstand shocks. Do not hit, as the magnet may crumble into sharp, dangerous pieces.

Warning! Want to know more? Check our post: Are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98