tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our proposal. All magnesy neodymowe on our website are available for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnet for water searching F400 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in airtight, solid steel casing are excellent for use in difficult, demanding weather conditions, including during snow and rain more information...

magnetic holders

Holders with magnets can be used to improve production processes, underwater exploration, or finding meteors from gold more...

We promise to ship your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 10x4.3x4 / N38 - ring magnet

ring magnet

Catalog no 030178

GTIN: 5906301811954

5

Diameter [±0,1 mm]

10 mm

internal diameter Ø [±0,1 mm]

4.3 mm

Height [±0,1 mm]

4 mm

Weight

5.37 g

Magnetization Direction

↑ axial

Load capacity

0.98 kg / 9.61 N

Magnetic Induction

157.60 mT

Coating

[NiCuNi] nickel

1.05 with VAT / pcs + price for transport

0.85 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.85 ZŁ
1.05 ZŁ
price from 706 pcs
0.80 ZŁ
0.98 ZŁ
price from 2589 pcs
0.75 ZŁ
0.92 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MP 10x4.3x4 / N38 - ring magnet

Specification/characteristics MP 10x4.3x4 / N38 - ring magnet
properties
values
Cat. no.
030178
GTIN
5906301811954
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
10 mm [±0,1 mm]
internal diameter Ø
4.3 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
5.37 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.98 kg / 9.61 N
Magnetic Induction ~ ?
157.60 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Due to specific properties, neodymium element MP 10x4.3x4 / N38 in a ring-shaped form finds extensive use in various industries. Thanks to a powerful magnetic field of 0.98 kg, which can be described as lifting capacity, they are very helpful in applications that require high magnetic power in a relatively small area. Usage of MP 10x4.3x4 / N38 magnets include electrical mechanisms, generators, audio systems, and many other devices that use magnets for generating motion or storing energy. Despite their powerful strength, they have a relatively low weight of 5.37 grams, which makes them more convenient to use compared to bulkier alternatives.
Ring magnets work due to their atomic structure. In the production process, neodymium atoms are arranged appropriately, which allows for the creation of a concentrated magnetic field in a specific direction. This field is ideal for applications in systems requiring motion control. Moreover, their resistance to high temperatures and demagnetization makes them indispensable in industry.
They are used in various fields of technology and industry, such as electronics, e.g., in the production of speakers or electric motors, automotive, where they are used in brushless electric motors, and medicine, where they are used in precision diagnostic devices. Thanks to their temperature resistance and precision makes them ideal for technologically advanced applications.
Ring magnets stand out extraordinary pulling power, resistance to high temperatures, and precision in generating the magnetic field. Thanks to their ring shape allows for application in devices requiring concentrated magnetic fields. Additionally, these magnets are more durable than traditional ferrite magnets, which has made them popular in advanced technologies and industrial applications.
Thanks to their resistance to high temperatures, ring magnets operate reliably even in tough conditions. They do not lose their magnetic properties, until the Curie temperature is exceeded, which for neodymium magnets is around 80°C. They are more resistant to loss of magnetism than traditional ferrite magnets. Because of this, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the shape) even at temperatures of 230°C or higher...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in a wide range of shapes and sizes, which enhances their versatility in applications.
  • Wide application in modern technologies – are used in computer drives, electric motors, medical equipment and other modern machines.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, it is suggested using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Health risk associated with microscopic parts of magnets are risky, if swallowed, which is particularly important in the aspect of protecting young children. Furthermore, miniscule components of these magnets are able to complicate diagnosis after entering the body.

Exercise Caution with Neodymium Magnets

 It is essential to maintain neodymium magnets out of reach from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets will jump and clash together within a radius of several to around 10 cm from each other.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnetic are extremely fragile, leading to shattering.

Neodymium magnetic are delicate as well as will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Warning!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98