tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our proposal. Practically all magnesy neodymowe in our store are available for immediate purchase (check the list). Check out the magnet price list for more details check the magnet price list

Magnet for treasure hunters F200 GOLD

Where to purchase strong magnet? Magnetic holders in airtight and durable enclosure are perfect for use in difficult, demanding weather, including in the rain and snow check...

magnets with holders

Holders with magnets can be applied to improve manufacturing, underwater exploration, or searching for space rocks made of ore read...

Order always shipped on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 10x4.3x4 / N38 - ring magnet

ring magnet

Catalog no 030178

GTIN: 5906301811954

5

Diameter [±0,1 mm]

10 mm

internal diameter Ø [±0,1 mm]

4.3 mm

Height [±0,1 mm]

4 mm

Weight

5.37 g

Magnetization Direction

↑ axial

Load capacity

0.98 kg / 9.61 N

Magnetic Induction

157.60 mT

Coating

[NiCuNi] nickel

1.045 with VAT / pcs + price for transport

0.850 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.850 ZŁ
1.045 ZŁ
price from 800 pcs
0.799 ZŁ
0.983 ZŁ
price from 3000 pcs
0.748 ZŁ
0.920 ZŁ

Want to talk magnets?

Contact us by phone +48 888 99 98 98 alternatively let us know by means of our online form our website.
Strength as well as structure of a neodymium magnet can be verified with our modular calculator.

Order by 14:00 and we’ll ship today!

MP 10x4.3x4 / N38 - ring magnet

Specification/characteristics MP 10x4.3x4 / N38 - ring magnet
properties
values
Cat. no.
030178
GTIN
5906301811954
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
10 mm [±0,1 mm]
internal diameter Ø
4.3 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
5.37 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.98 kg / 9.61 N
Magnetic Induction ~ ?
157.60 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium magnets MP 10x4.3x4 / N38 in a ring-shaped form are regularly used in various industries due to their specific properties. Thanks to a powerful magnetic field of 0.98 kg, which can be described as strength, they are extremely useful in applications that require high magnetic power in a relatively small area. Usage of MP 10x4.3x4 / N38 magnets include electric motors, generating systems, audio systems, and numerous other devices that use magnets for generating motion or energy storage. Despite their powerful strength, they have a comparatively low weight of 5.37 grams, which makes them more practical compared to heavier alternatives.
Ring magnets work due to their atomic structure. In the production process, neodymium atoms are arranged appropriately, which allows for the creation of a concentrated magnetic field in a specific direction. This makes them perfect for devices such as stepper motors or industrial robots. Moreover, their resistance to high temperatures and demagnetization makes them indispensable in industry.
They are used in various fields of technology and industry, such as production of electronic devices, such as speakers and electric motors, automotive, where they are used in brushless electric motors, and medicine, where they are used in precision diagnostic devices. Thanks to their temperature resistance and precision makes them ideal for technologically advanced applications.
Ring magnets stand out high magnetic strength, resistance to high temperatures, precise control of the magnetic field. Their unique ring form allows for application in devices requiring concentrated magnetic fields. Additionally, these magnets are significantly stronger and more versatile than ferrite counterparts, making them an ideal choice in the automotive, electronics, and medical industries.
Ring magnets perform excellently across a wide range of temperatures. They do not lose their magnetic properties, as long as the temperature does not exceed the Curie point. Compared to other types of magnets, ring magnets show greater resistance to demagnetization. Because of this, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A ring magnet of class N50 and N52 is a powerful and strong metallic component designed as a ring, that provides high force and versatile application. Very good price, availability, durability and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They retain their full power for almost 10 years – the drop is just ~1% (in theory),
  • They remain magnetized despite exposure to magnetic surroundings,
  • Thanks to the glossy finish and gold coating, they have an elegant appearance,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the form),
  • With the option for fine forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Key role in modern technologies – they are used in HDDs, electromechanical systems, diagnostic apparatus or even high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them ideal in miniature devices

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage while also increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
  • Potential hazard from tiny pieces may arise, if ingested accidentally, which is crucial in the health of young users. Moreover, small elements from these magnets might hinder health screening when ingested,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications

Detachment force of the magnet in optimal conditionswhat contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, determined in a perfect environment, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a polished side
  • with no separation
  • under perpendicular detachment force
  • at room temperature

Lifting capacity in practice – influencing factors

In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Moreover, even a small distance {between} the magnet and the plate lowers the load capacity.

Be Cautious with Neodymium Magnets

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the strongest magnets ever created, and their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

If have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or a fracture.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnetic are fragile and can easily break and get damaged.

Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Warning!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98