tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our store's offer. Practically all magnesy on our website are in stock for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnets for treasure hunters F400 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in airtight, solid steel enclosure are perfect for use in variable and difficult climate conditions, including snow and rain check...

magnets with holders

Holders with magnets can be used to enhance production processes, underwater exploration, or locating space rocks made of metal more information...

Shipping is shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 40x18x10 / N38 - lamellar magnet

lamellar magnet

Catalog no 020156

GTIN: 5906301811626

5

length [±0,1 mm]

40 mm

Width [±0,1 mm]

18 mm

Height [±0,1 mm]

10 mm

Weight

54 g

Magnetization Direction

↑ axial

Load capacity

21.19 kg / 207.8 N

Magnetic Induction

366.66 mT

Coating

[NiCuNi] nickel

25.01 with VAT / pcs + price for transport

20.33 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
20.33 ZŁ
25.01 ZŁ
price from 600 pcs
19.11 ZŁ
23.51 ZŁ
price from 2200 pcs
17.89 ZŁ
22.01 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 40x18x10 / N38 - lamellar magnet

Specification/characteristics MPL 40x18x10 / N38 - lamellar magnet
properties
values
Cat. no.
020156
GTIN
5906301811626
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
40 mm [±0,1 mm]
Width
18 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
54 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
21.19 kg / 207.8 N
Magnetic Induction ~ ?
366.66 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets i.e. MPL 40x18x10 / N38 are magnets made from neodymium in a rectangular form. They are appreciated for their very strong magnetic properties, which are much stronger than standard iron magnets.
Thanks to their mighty power, flat magnets are commonly applied in structures that require exceptional adhesion.
The standard temperature resistance of flat magnets is 80 °C, but depending on the dimensions, this value rises.
Additionally, flat magnets often have special coatings applied to their surfaces, such as nickel, gold, or chrome, to improve their corrosion resistance.
The magnet named MPL 40x18x10 / N38 and a magnetic strength 21.19 kg which weighs only 54 grams, making it the perfect choice for applications requiring a flat shape.
Neodymium flat magnets provide a range of advantages versus other magnet shapes, which lead to them being an ideal choice for a multitude of projects:
Contact surface: Due to their flat shape, flat magnets guarantee a larger contact surface with other components, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: They are often used in many devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is crucial for their operation.
Mounting: The flat form's flat shape makes it easier mounting, especially when it is required to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets permits creators greater flexibility in placing them in devices, which can be more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet may provide better stability, reducing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet is dependent on the specific application and requirements. In some cases, other shapes, such as cylindrical or spherical, are a better choice.
How do magnets work? Magnets attract ferromagnetic materials, such as iron, nickel, cobalt and special alloys of ferromagnetic metals. Moreover, magnets may lesser affect some other metals, such as steel. Magnets are used in many fields.
The operation of magnets is based on the properties of their magnetic field, which is generated by the movement of electric charges within their material. The magnetic field of magnets creates attractive forces, which affect objects made of iron or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which attract each other when they are oppositely oriented. Similar poles, such as two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are regularly used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the materials used.
Not all materials react to magnets, and examples of such substances are plastic, glass items, wooden materials and most gemstones. Furthermore, magnets do not affect certain metals, such as copper, aluminum materials, items made of gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless they are subjected to an extremely strong magnetic field.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as compasses, credit cards or medical equipment, like pacemakers. For this reason, it is important to avoid placing magnets near such devices.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time - after approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the glossy nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in many variants of shapes and sizes, which enhances their versatility in applications.
  • Key role in advanced technologically fields – find application in computer drives, electric drive mechanisms, medical devices and various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard associated with microscopic parts of magnets pose a threat, if swallowed, which becomes significant in the aspect of protecting young children. It's also worth noting that small elements of these products can hinder the diagnostic process when they are in the body.

Handle Neodymium Magnets with Caution

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

If you have a finger between or on the path of attracting magnets, there may be a serious cut or a fracture.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are fragile as well as can easily break as well as shatter.

Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Be careful!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98