MPL 11x11x1 / N38 - lamellar magnet
lamellar magnet
Catalog no 020116
GTIN/EAN: 5906301811220
length
11 mm [±0,1 mm]
Width
11 mm [±0,1 mm]
Height
1 mm [±0,1 mm]
Weight
0.91 g
Magnetization Direction
↑ axial
Load capacity
0.43 kg / 4.24 N
Magnetic Induction
100.10 mT / 1001 Gs
Coating
[NiCuNi] Nickel
0.873 ZŁ with VAT / pcs + price for transport
0.710 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 888 99 98 98
otherwise contact us through
our online form
the contact page.
Specifications as well as structure of neodymium magnets can be checked on our
power calculator.
Orders placed before 14:00 will be shipped the same business day.
Physical properties - MPL 11x11x1 / N38 - lamellar magnet
Specification / characteristics - MPL 11x11x1 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020116 |
| GTIN/EAN | 5906301811220 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 11 mm [±0,1 mm] |
| Width | 11 mm [±0,1 mm] |
| Height | 1 mm [±0,1 mm] |
| Weight | 0.91 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.43 kg / 4.24 N |
| Magnetic Induction ~ ? | 100.10 mT / 1001 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical modeling of the product - technical parameters
The following values are the outcome of a physical analysis. Values rely on algorithms for the material Nd2Fe14B. Real-world performance may deviate from the simulation results. Use these data as a supplementary guide for designers.
Table 1: Static force (pull vs gap) - power drop
MPL 11x11x1 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
1001 Gs
100.1 mT
|
0.43 kg / 0.95 lbs
430.0 g / 4.2 N
|
low risk |
| 1 mm |
925 Gs
92.5 mT
|
0.37 kg / 0.81 lbs
367.7 g / 3.6 N
|
low risk |
| 2 mm |
800 Gs
80.0 mT
|
0.27 kg / 0.61 lbs
274.9 g / 2.7 N
|
low risk |
| 3 mm |
659 Gs
65.9 mT
|
0.19 kg / 0.41 lbs
186.5 g / 1.8 N
|
low risk |
| 5 mm |
415 Gs
41.5 mT
|
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
low risk |
| 10 mm |
130 Gs
13.0 mT
|
0.01 kg / 0.02 lbs
7.3 g / 0.1 N
|
low risk |
| 15 mm |
51 Gs
5.1 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
low risk |
| 20 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
low risk |
| 30 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
Table 2: Shear force (wall)
MPL 11x11x1 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| 1 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
38.0 g / 0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MPL 11x11x1 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.13 kg / 0.28 lbs
129.0 g / 1.3 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 0.09 lbs
43.0 g / 0.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.22 kg / 0.47 lbs
215.0 g / 2.1 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MPL 11x11x1 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 0.09 lbs
43.0 g / 0.4 N
|
| 1 mm |
|
0.11 kg / 0.24 lbs
107.5 g / 1.1 N
|
| 2 mm |
|
0.22 kg / 0.47 lbs
215.0 g / 2.1 N
|
| 3 mm |
|
0.32 kg / 0.71 lbs
322.5 g / 3.2 N
|
| 5 mm |
|
0.43 kg / 0.95 lbs
430.0 g / 4.2 N
|
| 10 mm |
|
0.43 kg / 0.95 lbs
430.0 g / 4.2 N
|
| 11 mm |
|
0.43 kg / 0.95 lbs
430.0 g / 4.2 N
|
| 12 mm |
|
0.43 kg / 0.95 lbs
430.0 g / 4.2 N
|
Table 5: Thermal resistance (stability) - resistance threshold
MPL 11x11x1 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.43 kg / 0.95 lbs
430.0 g / 4.2 N
|
OK |
| 40 °C | -2.2% |
0.42 kg / 0.93 lbs
420.5 g / 4.1 N
|
OK |
| 60 °C | -4.4% |
0.41 kg / 0.91 lbs
411.1 g / 4.0 N
|
|
| 80 °C | -6.6% |
0.40 kg / 0.89 lbs
401.6 g / 3.9 N
|
|
| 100 °C | -28.8% |
0.31 kg / 0.67 lbs
306.2 g / 3.0 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field collision
MPL 11x11x1 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.75 kg / 1.65 lbs
1 925 Gs
|
0.11 kg / 0.25 lbs
112 g / 1.1 N
|
N/A |
| 1 mm |
0.70 kg / 1.55 lbs
1 943 Gs
|
0.11 kg / 0.23 lbs
106 g / 1.0 N
|
0.63 kg / 1.40 lbs
~0 Gs
|
| 2 mm |
0.64 kg / 1.41 lbs
1 851 Gs
|
0.10 kg / 0.21 lbs
96 g / 0.9 N
|
0.58 kg / 1.27 lbs
~0 Gs
|
| 3 mm |
0.56 kg / 1.24 lbs
1 734 Gs
|
0.08 kg / 0.19 lbs
84 g / 0.8 N
|
0.50 kg / 1.11 lbs
~0 Gs
|
| 5 mm |
0.40 kg / 0.88 lbs
1 460 Gs
|
0.06 kg / 0.13 lbs
60 g / 0.6 N
|
0.36 kg / 0.79 lbs
~0 Gs
|
| 10 mm |
0.13 kg / 0.28 lbs
831 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.12 kg / 0.26 lbs
~0 Gs
|
| 20 mm |
0.01 kg / 0.03 lbs
261 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
26 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (implants) - precautionary measures
MPL 11x11x1 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 4.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 3.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 2.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 2.0 cm |
| Remote | 50 Gs (5.0 mT) | 2.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MPL 11x11x1 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
22.15 km/h
(6.15 m/s)
|
0.02 J | |
| 30 mm |
37.97 km/h
(10.55 m/s)
|
0.05 J | |
| 50 mm |
49.02 km/h
(13.62 m/s)
|
0.08 J | |
| 100 mm |
69.33 km/h
(19.26 m/s)
|
0.17 J |
Table 9: Coating parameters (durability)
MPL 11x11x1 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MPL 11x11x1 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 627 Mx | 16.3 µWb |
| Pc Coefficient | 0.13 | Low (Flat) |
Table 11: Submerged application
MPL 11x11x1 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.43 kg | Standard |
| Water (riverbed) |
0.49 kg
(+0.06 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical surface, the magnet holds only approx. 20-30% of its max power.
2. Steel saturation
*Thin steel (e.g. computer case) significantly limits the holding force.
3. Heat tolerance
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.13
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Strengths as well as weaknesses of rare earth magnets.
Advantages
- They have unchanged lifting capacity, and over around ten years their performance decreases symbolically – ~1% (according to theory),
- They are resistant to demagnetization induced by external magnetic fields,
- By using a smooth layer of silver, the element presents an modern look,
- They show high magnetic induction at the operating surface, which improves attraction properties,
- Due to their durability and thermal resistance, neodymium magnets can operate (depending on the form) even at high temperatures reaching 230°C or more...
- Thanks to the ability of accurate molding and adaptation to individualized requirements, NdFeB magnets can be modeled in a variety of geometric configurations, which amplifies use scope,
- Significant place in innovative solutions – they are utilized in computer drives, motor assemblies, diagnostic systems, also other advanced devices.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in small dimensions, which allows their use in miniature devices
Weaknesses
- Brittleness is one of their disadvantages. Upon intense impact they can fracture. We advise keeping them in a special holder, which not only secures them against impacts but also raises their durability
- When exposed to high temperature, neodymium magnets suffer a drop in force. Often, when the temperature exceeds 80°C, their power decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- They rust in a humid environment. For use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- Due to limitations in producing threads and complex forms in magnets, we propose using a housing - magnetic holder.
- Potential hazard related to microscopic parts of magnets are risky, if swallowed, which gains importance in the context of child safety. Additionally, tiny parts of these devices can disrupt the diagnostic process medical in case of swallowing.
- Due to neodymium price, their price exceeds standard values,
Holding force characteristics
Optimal lifting capacity of a neodymium magnet – what contributes to it?
- with the application of a sheet made of low-carbon steel, guaranteeing full magnetic saturation
- with a thickness minimum 10 mm
- with a plane free of scratches
- with direct contact (no paint)
- for force acting at a right angle (in the magnet axis)
- at standard ambient temperature
Determinants of practical lifting force of a magnet
- Gap (betwixt the magnet and the plate), since even a tiny clearance (e.g. 0.5 mm) results in a reduction in force by up to 50% (this also applies to paint, rust or debris).
- Force direction – catalog parameter refers to detachment vertically. When attempting to slide, the magnet holds significantly lower power (typically approx. 20-30% of nominal force).
- Base massiveness – too thin plate does not close the flux, causing part of the flux to be lost into the air.
- Chemical composition of the base – low-carbon steel gives the best results. Higher carbon content lower magnetic properties and holding force.
- Plate texture – ground elements guarantee perfect abutment, which improves force. Uneven metal weaken the grip.
- Thermal conditions – NdFeB sinters have a sensitivity to temperature. When it is hot they are weaker, and in frost gain strength (up to a certain limit).
Lifting capacity testing was performed on a smooth plate of optimal thickness, under perpendicular forces, in contrast under parallel forces the holding force is lower. Moreover, even a slight gap between the magnet’s surface and the plate lowers the holding force.
Precautions when working with NdFeB magnets
Warning for heart patients
Warning for patients: Strong magnetic fields affect electronics. Keep minimum 30 cm distance or ask another person to work with the magnets.
Permanent damage
Monitor thermal conditions. Exposing the magnet to high heat will ruin its magnetic structure and pulling force.
Fire warning
Mechanical processing of NdFeB material poses a fire hazard. Magnetic powder oxidizes rapidly with oxygen and is difficult to extinguish.
Immense force
Before use, check safety instructions. Uncontrolled attraction can break the magnet or hurt your hand. Think ahead.
Threat to navigation
Navigation devices and mobile phones are highly sensitive to magnetic fields. Close proximity with a strong magnet can permanently damage the sensors in your phone.
Product not for children
These products are not suitable for play. Swallowing a few magnets may result in them attracting across intestines, which poses a direct threat to life and requires immediate surgery.
Magnets are brittle
NdFeB magnets are sintered ceramics, which means they are prone to chipping. Clashing of two magnets will cause them cracking into small pieces.
Crushing risk
Big blocks can smash fingers instantly. Do not put your hand betwixt two attracting surfaces.
Protect data
Powerful magnetic fields can corrupt files on credit cards, HDDs, and storage devices. Maintain a gap of at least 10 cm.
Nickel coating and allergies
Allergy Notice: The Ni-Cu-Ni coating consists of nickel. If redness occurs, cease handling magnets and use protective gear.
