MW 30x5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010056
GTIN: 5906301810551
Diameter Ø [±0,1 mm]
30 mm
Height [±0,1 mm]
5 mm
Weight
26.51 g
Magnetization Direction
↑ axial
Load capacity
8.29 kg / 81.3 N
Magnetic Induction
196.02 mT
Coating
[NiCuNi] nickel
9.59 ZŁ with VAT / pcs + price for transport
7.80 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Call us
+48 22 499 98 98
alternatively send us a note by means of
request form
the contact section.
Specifications and structure of a magnet can be tested with our
our magnetic calculator.
Order by 14:00 and we’ll ship today!
MW 30x5 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of gold-nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as epoxy, to preserve them from environmental factors and prolong their durability. High temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They retain their full power for nearly ten years – the drop is just ~1% (according to analyses),
- They are very resistant to demagnetization caused by external magnetic sources,
- By applying a shiny layer of gold, the element gains a sleek look,
- Magnetic induction on the surface of these magnets is impressively powerful,
- Thanks to their exceptional temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which increases their usage potential,
- Wide application in advanced technical fields – they are used in data storage devices, rotating machines, healthcare devices or even sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them ideal in small systems
Disadvantages of magnetic elements:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time reinforces its overall durability,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a wet environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of plastic,
- Limited ability to create precision features in the magnet – the use of a housing is recommended,
- Safety concern from tiny pieces may arise, especially if swallowed, which is significant in the protection of children. It should also be noted that miniature parts from these products may disrupt scanning if inside the body,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Maximum lifting force for a neodymium magnet – what contributes to it?
The given strength of the magnet corresponds to the optimal strength, calculated in the best circumstances, that is:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a smooth surface
- in conditions of no clearance
- in a perpendicular direction of force
- at room temperature
Lifting capacity in real conditions – factors
In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under parallel forces the lifting capacity is smaller. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the load capacity.
Exercise Caution with Neodymium Magnets
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Neodymium magnets will jump and also contact together within a distance of several to around 10 cm from each other.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are particularly delicate, resulting in shattering.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Safety precautions!
In order to illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are very strong neodymium magnets?.