SM 25x275 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130372
GTIN: 5906301813200
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
275 mm
Weight
0.01 g
836.40 ZŁ with VAT / pcs + price for transport
680.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Contact us by phone
+48 888 99 98 98
alternatively send us a note by means of
contact form
the contact section.
Parameters along with form of magnets can be tested using our
modular calculator.
Same-day shipping for orders placed before 14:00.
SM 25x275 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong power, neodymium magnets have these key benefits:
- They have unchanged lifting capacity, and over nearly 10 years their attraction force decreases symbolically – ~1% (in testing),
- They are extremely resistant to demagnetization caused by external magnetic sources,
- Because of the reflective layer of silver, the component looks visually appealing,
- The outer field strength of the magnet shows remarkable magnetic properties,
- Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which expands their application range,
- Wide application in advanced technical fields – they are utilized in hard drives, rotating machines, clinical machines as well as technologically developed systems,
- Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of rare earth magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time enhances its overall strength,
- They lose magnetic force at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of protective material for outdoor use,
- Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
- Possible threat related to magnet particles may arise, if ingested accidentally, which is notable in the health of young users. Additionally, small elements from these products might disrupt scanning after being swallowed,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Best holding force of the magnet in ideal parameters – what contributes to it?
The given lifting capacity of the magnet represents the maximum lifting force, determined in the best circumstances, specifically:
- with mild steel, serving as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- in conditions of no clearance
- with vertical force applied
- under standard ambient temperature
Determinants of practical lifting force of a magnet
In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under shearing force the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet and the plate lowers the lifting capacity.
Caution with Neodymium Magnets
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets may crack or alternatively crumble with uncontrolled joining to each other. You can't move them to each other. At a distance less than 10 cm you should have them very firmly.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets are not toys, children should not play with them.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Never bring neodymium magnets close to a phone and GPS.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnetic are known for their fragility, which can cause them to become damaged.
Neodymium magnets are extremely fragile, and by joining them in an uncontrolled manner, they will break. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Safety precautions!
So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.