SM 25x275 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130372
GTIN: 5906301813200
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
275 mm
Weight
0.01 g
836.40 ZŁ with VAT / pcs + price for transport
680.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Call us
+48 888 99 98 98
if you prefer send us a note by means of
inquiry form
the contact section.
Specifications along with appearance of a magnet can be tested with our
our magnetic calculator.
Same-day processing for orders placed before 14:00.
SM 25x275 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their remarkable field intensity, neodymium magnets offer the following advantages:
- They do not lose their even during approximately 10 years – the decrease of power is only ~1% (theoretically),
- They are extremely resistant to demagnetization caused by external field interference,
- Because of the brilliant layer of silver, the component looks high-end,
- Magnetic induction on the surface of these magnets is impressively powerful,
- Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which increases their functional possibilities,
- Key role in cutting-edge sectors – they are used in data storage devices, electric drives, diagnostic apparatus as well as sophisticated instruments,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a strong impact. If the magnets are exposed to mechanical hits, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall strength,
- They lose power at high temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a wet environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
- Safety concern due to small fragments may arise, especially if swallowed, which is significant in the protection of children. Additionally, tiny components from these magnets have the potential to hinder health screening after being swallowed,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Maximum holding power of the magnet – what affects it?
The given pulling force of the magnet means the maximum force, measured in ideal conditions, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- with a thickness of minimum 10 mm
- with a refined outer layer
- in conditions of no clearance
- in a perpendicular direction of force
- at room temperature
Determinants of practical lifting force of a magnet
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed by applying a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, whereas under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet and the plate reduces the holding force.
Be Cautious with Neodymium Magnets
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnetic are particularly fragile, resulting in shattering.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets can demagnetize at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Magnets are not toys, youngest should not play with them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Magnets will crack or crumble with uncontrolled joining to each other. You can't move them to each other. At a distance less than 10 cm you should have them very strongly.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Pay attention!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.
