SM 25x275 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130372
GTIN: 5906301813200
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
275 mm
Weight
0.01 g
836.40 ZŁ with VAT / pcs + price for transport
680.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Contact us by phone
+48 22 499 98 98
or let us know using
request form
our website.
Parameters as well as appearance of magnets can be analyzed on our
force calculator.
Order by 14:00 and we’ll ship today!
SM 25x275 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their notable magnetic energy, neodymium magnets have these key benefits:
- They do not lose their power nearly ten years – the reduction of power is only ~1% (based on measurements),
- They are highly resistant to demagnetization caused by external field interference,
- In other words, due to the glossy nickel coating, the magnet obtains an professional appearance,
- The outer field strength of the magnet shows remarkable magnetic properties,
- With the right combination of materials, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
- With the option for tailored forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
- Key role in cutting-edge sectors – they find application in computer drives, electric drives, medical equipment as well as technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them useful in compact constructions
Disadvantages of magnetic elements:
- They can break when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time enhances its overall strength,
- They lose power at extreme temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of plastic for outdoor use,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
- Possible threat from tiny pieces may arise, when consumed by mistake, which is notable in the family environments. Additionally, tiny components from these devices have the potential to disrupt scanning when ingested,
- In cases of tight budgets, neodymium magnet cost is a challenge,
Maximum lifting force for a neodymium magnet – what contributes to it?
The given pulling force of the magnet represents the maximum force, calculated in the best circumstances, specifically:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with no separation
- in a perpendicular direction of force
- at room temperature
Determinants of practical lifting force of a magnet
In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet and the plate decreases the holding force.
Notes with Neodymium Magnets
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Keep neodymium magnets away from GPS and smartphones.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets are not toys, children should not play with them.
Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
In the case of holding a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are extremely fragile, they easily fall apart and can become damaged.
Neodymium magnetic are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Pay attention!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
