MPL 40x10x4 / N38 - lamellar magnet
lamellar magnet
Catalog no 020150
GTIN/EAN: 5906301811565
length
40 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
12 g
Magnetization Direction
↑ axial
Load capacity
9.31 kg / 91.33 N
Magnetic Induction
275.57 mT / 2756 Gs
Coating
[NiCuNi] Nickel
4.87 ZŁ with VAT / pcs + price for transport
3.96 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 22 499 98 98
alternatively let us know via
inquiry form
the contact form page.
Lifting power along with appearance of magnets can be calculated with our
power calculator.
Orders submitted before 14:00 will be dispatched today!
Technical specification - MPL 40x10x4 / N38 - lamellar magnet
Specification / characteristics - MPL 40x10x4 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020150 |
| GTIN/EAN | 5906301811565 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 40 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 12 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 9.31 kg / 91.33 N |
| Magnetic Induction ~ ? | 275.57 mT / 2756 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical simulation of the product - report
These information are the outcome of a physical analysis. Results are based on models for the class Nd2Fe14B. Real-world parameters might slightly deviate from the simulation results. Please consider these calculations as a reference point when designing systems.
Table 1: Static force (pull vs gap) - power drop
MPL 40x10x4 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2755 Gs
275.5 mT
|
9.31 kg / 20.53 LBS
9310.0 g / 91.3 N
|
warning |
| 1 mm |
2413 Gs
241.3 mT
|
7.14 kg / 15.75 LBS
7143.1 g / 70.1 N
|
warning |
| 2 mm |
2044 Gs
204.4 mT
|
5.13 kg / 11.31 LBS
5128.9 g / 50.3 N
|
warning |
| 3 mm |
1703 Gs
170.3 mT
|
3.56 kg / 7.85 LBS
3559.5 g / 34.9 N
|
warning |
| 5 mm |
1173 Gs
117.3 mT
|
1.69 kg / 3.72 LBS
1688.2 g / 16.6 N
|
safe |
| 10 mm |
522 Gs
52.2 mT
|
0.33 kg / 0.74 LBS
334.9 g / 3.3 N
|
safe |
| 15 mm |
277 Gs
27.7 mT
|
0.09 kg / 0.21 LBS
94.2 g / 0.9 N
|
safe |
| 20 mm |
163 Gs
16.3 mT
|
0.03 kg / 0.07 LBS
32.8 g / 0.3 N
|
safe |
| 30 mm |
69 Gs
6.9 mT
|
0.01 kg / 0.01 LBS
5.8 g / 0.1 N
|
safe |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 LBS
0.5 g / 0.0 N
|
safe |
Table 2: Vertical force (wall)
MPL 40x10x4 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.86 kg / 4.11 LBS
1862.0 g / 18.3 N
|
| 1 mm | Stal (~0.2) |
1.43 kg / 3.15 LBS
1428.0 g / 14.0 N
|
| 2 mm | Stal (~0.2) |
1.03 kg / 2.26 LBS
1026.0 g / 10.1 N
|
| 3 mm | Stal (~0.2) |
0.71 kg / 1.57 LBS
712.0 g / 7.0 N
|
| 5 mm | Stal (~0.2) |
0.34 kg / 0.75 LBS
338.0 g / 3.3 N
|
| 10 mm | Stal (~0.2) |
0.07 kg / 0.15 LBS
66.0 g / 0.6 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.04 LBS
18.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.01 LBS
6.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MPL 40x10x4 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
2.79 kg / 6.16 LBS
2793.0 g / 27.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.86 kg / 4.11 LBS
1862.0 g / 18.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 2.05 LBS
931.0 g / 9.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
4.66 kg / 10.26 LBS
4655.0 g / 45.7 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MPL 40x10x4 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 2.05 LBS
931.0 g / 9.1 N
|
| 1 mm |
|
2.33 kg / 5.13 LBS
2327.5 g / 22.8 N
|
| 2 mm |
|
4.66 kg / 10.26 LBS
4655.0 g / 45.7 N
|
| 3 mm |
|
6.98 kg / 15.39 LBS
6982.5 g / 68.5 N
|
| 5 mm |
|
9.31 kg / 20.53 LBS
9310.0 g / 91.3 N
|
| 10 mm |
|
9.31 kg / 20.53 LBS
9310.0 g / 91.3 N
|
| 11 mm |
|
9.31 kg / 20.53 LBS
9310.0 g / 91.3 N
|
| 12 mm |
|
9.31 kg / 20.53 LBS
9310.0 g / 91.3 N
|
Table 5: Working in heat (stability) - resistance threshold
MPL 40x10x4 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.31 kg / 20.53 LBS
9310.0 g / 91.3 N
|
OK |
| 40 °C | -2.2% |
9.11 kg / 20.07 LBS
9105.2 g / 89.3 N
|
OK |
| 60 °C | -4.4% |
8.90 kg / 19.62 LBS
8900.4 g / 87.3 N
|
|
| 80 °C | -6.6% |
8.70 kg / 19.17 LBS
8695.5 g / 85.3 N
|
|
| 100 °C | -28.8% |
6.63 kg / 14.61 LBS
6628.7 g / 65.0 N
|
Table 6: Two magnets (attraction) - forces in the system
MPL 40x10x4 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
18.71 kg / 41.25 LBS
4 164 Gs
|
2.81 kg / 6.19 LBS
2807 g / 27.5 N
|
N/A |
| 1 mm |
16.57 kg / 36.53 LBS
5 185 Gs
|
2.49 kg / 5.48 LBS
2486 g / 24.4 N
|
14.91 kg / 32.88 LBS
~0 Gs
|
| 2 mm |
14.36 kg / 31.65 LBS
4 826 Gs
|
2.15 kg / 4.75 LBS
2153 g / 21.1 N
|
12.92 kg / 28.48 LBS
~0 Gs
|
| 3 mm |
12.24 kg / 26.98 LBS
4 455 Gs
|
1.84 kg / 4.05 LBS
1836 g / 18.0 N
|
11.01 kg / 24.28 LBS
~0 Gs
|
| 5 mm |
8.61 kg / 18.98 LBS
3 737 Gs
|
1.29 kg / 2.85 LBS
1291 g / 12.7 N
|
7.75 kg / 17.08 LBS
~0 Gs
|
| 10 mm |
3.39 kg / 7.48 LBS
2 346 Gs
|
0.51 kg / 1.12 LBS
509 g / 5.0 N
|
3.05 kg / 6.73 LBS
~0 Gs
|
| 20 mm |
0.67 kg / 1.48 LBS
1 045 Gs
|
0.10 kg / 0.22 LBS
101 g / 1.0 N
|
0.61 kg / 1.34 LBS
~0 Gs
|
| 50 mm |
0.03 kg / 0.06 LBS
207 Gs
|
0.00 kg / 0.01 LBS
4 g / 0.0 N
|
0.02 kg / 0.05 LBS
~0 Gs
|
| 60 mm |
0.01 kg / 0.03 LBS
138 Gs
|
0.00 kg / 0.00 LBS
2 g / 0.0 N
|
0.01 kg / 0.02 LBS
~0 Gs
|
| 70 mm |
0.01 kg / 0.01 LBS
96 Gs
|
0.00 kg / 0.00 LBS
1 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 LBS
69 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 LBS
51 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 LBS
39 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
Table 7: Protective zones (electronics) - precautionary measures
MPL 40x10x4 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 8.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 6.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 5.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 4.0 cm |
| Car key | 50 Gs (5.0 mT) | 3.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Collisions (kinetic energy) - warning
MPL 40x10x4 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
28.72 km/h
(7.98 m/s)
|
0.38 J | |
| 30 mm |
48.67 km/h
(13.52 m/s)
|
1.10 J | |
| 50 mm |
62.82 km/h
(17.45 m/s)
|
1.83 J | |
| 100 mm |
88.83 km/h
(24.68 m/s)
|
3.65 J |
Table 9: Corrosion resistance
MPL 40x10x4 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 40x10x4 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 9 840 Mx | 98.4 µWb |
| Pc Coefficient | 0.26 | Low (Flat) |
Table 11: Submerged application
MPL 40x10x4 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 9.31 kg | Standard |
| Water (riverbed) |
10.66 kg
(+1.35 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Note: On a vertical surface, the magnet holds merely ~20% of its max power.
2. Steel thickness impact
*Thin metal sheet (e.g. computer case) severely weakens the holding force.
3. Thermal stability
*For N38 material, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.26
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also offers
Strengths and weaknesses of Nd2Fe14B magnets.
Pros
- Their power is durable, and after approximately ten years it decreases only by ~1% (according to research),
- Magnets perfectly defend themselves against loss of magnetization caused by ambient magnetic noise,
- By covering with a smooth coating of gold, the element acquires an proper look,
- They are known for high magnetic induction at the operating surface, making them more effective,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
- Due to the option of flexible shaping and customization to unique requirements, neodymium magnets can be manufactured in a broad palette of shapes and sizes, which makes them more universal,
- Significant place in high-tech industry – they are used in computer drives, electromotive mechanisms, advanced medical instruments, and modern systems.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Disadvantages
- To avoid cracks under impact, we suggest using special steel housings. Such a solution protects the magnet and simultaneously improves its durability.
- We warn that neodymium magnets can reduce their power at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
- They rust in a humid environment - during use outdoors we advise using waterproof magnets e.g. in rubber, plastic
- We recommend a housing - magnetic holder, due to difficulties in producing nuts inside the magnet and complicated forms.
- Health risk related to microscopic parts of magnets pose a threat, if swallowed, which becomes key in the context of child safety. Additionally, small components of these devices are able to disrupt the diagnostic process medical when they are in the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Lifting parameters
Magnetic strength at its maximum – what affects it?
- with the contact of a yoke made of special test steel, guaranteeing maximum field concentration
- possessing a massiveness of at least 10 mm to ensure full flux closure
- characterized by smoothness
- with zero gap (no impurities)
- under vertical application of breakaway force (90-degree angle)
- in stable room temperature
Determinants of lifting force in real conditions
- Distance – existence of foreign body (paint, dirt, gap) acts as an insulator, which reduces capacity rapidly (even by 50% at 0.5 mm).
- Pull-off angle – remember that the magnet has greatest strength perpendicularly. Under shear forces, the capacity drops significantly, often to levels of 20-30% of the maximum value.
- Plate thickness – too thin sheet causes magnetic saturation, causing part of the flux to be lost to the other side.
- Metal type – not every steel attracts identically. High carbon content worsen the interaction with the magnet.
- Plate texture – smooth surfaces ensure maximum contact, which improves force. Rough surfaces reduce efficiency.
- Thermal environment – heating the magnet causes a temporary drop of induction. It is worth remembering the thermal limit for a given model.
Lifting capacity was measured by applying a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, whereas under shearing force the load capacity is reduced by as much as fivefold. In addition, even a slight gap between the magnet’s surface and the plate lowers the lifting capacity.
Precautions when working with NdFeB magnets
Do not overheat magnets
Control the heat. Heating the magnet to high heat will destroy its properties and strength.
Electronic hazard
Data protection: Neodymium magnets can damage data carriers and sensitive devices (pacemakers, hearing aids, timepieces).
Handling guide
Use magnets consciously. Their huge power can surprise even experienced users. Plan your moves and do not underestimate their power.
Skin irritation risks
Medical facts indicate that nickel (the usual finish) is a strong allergen. If your skin reacts to metals, prevent direct skin contact or choose coated magnets.
Mechanical processing
Dust generated during cutting of magnets is flammable. Avoid drilling into magnets without proper cooling and knowledge.
Life threat
Warning for patients: Powerful magnets disrupt medical devices. Keep at least 30 cm distance or request help to work with the magnets.
Pinching danger
Watch your fingers. Two powerful magnets will snap together instantly with a force of massive weight, crushing anything in their path. Be careful!
Threat to navigation
An intense magnetic field interferes with the functioning of compasses in phones and GPS navigation. Do not bring magnets close to a device to avoid damaging the sensors.
Magnet fragility
Despite the nickel coating, neodymium is delicate and cannot withstand shocks. Avoid impacts, as the magnet may shatter into sharp, dangerous pieces.
Adults only
Absolutely keep magnets away from children. Risk of swallowing is significant, and the effects of magnets connecting inside the body are life-threatening.
