MPL 40x10x4 / N38 - neodymium magnet
lamellar magnet
catalog number 020150
GTIN: 5906301811565
length
40
mm [±0,1 mm]
width
10
mm [±0,1 mm]
height
4
mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
6.32 kg / 61.98 N
magnetic induction ~
275.57 mT / 2,756 Gs
max. temperature
≤ 80
°C
catalog number 020150
GTIN: 5906301811565
length
40 mm [±0,1 mm]
width
10 mm [±0,1 mm]
height
4 mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
6.32 kg / 61.98 N
magnetic induction ~
275.57 mT / 2,756 Gs
max. temperature
≤ 80 °C
3.75 ZŁ gross price (including VAT) / pcs +
3.05 ZŁ net price + 23% VAT / pcs
bulk discounts:
need more quantity?Want to talk about magnets?
Give us a call tel: +48 888 99 98 98 or get in touch through form on our website. You can check the lifting capacity as well as the shape of neodymium magnets in our power calculator power calculator
Orders placed by 2:00 PM will be shipped on the same business day.
Specification: lamellar magnet 40x10x4 / N38 ↑ axial
Magnetic properties of the material N38
Physical properties of sintered neodymium magnets Nd2Fe14B
Due to their power, flat magnets are commonly applied in structures that require very strong attraction.
Most common temperature resistance of flat magnets is 80°C, but with larger dimensions, this value rises.
Additionally, flat magnets often have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, to increase their strength.
The magnet with the designation MPL 40x10x4 / N38 i.e. a lifting capacity of 6.32 kg which weighs just 12.00 grams, making it the excellent choice for applications requiring a flat shape.
Contact surface: Thanks to their flat shape, flat magnets ensure a greater contact surface with other components, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: They are often applied in various devices, such as sensors, stepper motors, or speakers, where the thin and wide shape is necessary for their operation.
Mounting: Their flat shape makes mounting, particularly when it is required to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets allows creators a lot of flexibility in placing them in devices, which can be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet may provide better stability, minimizing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet depends on the specific project and requirements. In some cases, other shapes, such as cylindrical or spherical, may be a better choice.
Magnets have two main poles: north (N) and south (S), which interact with each other when they are different. Poles of the same kind, e.g. two north poles, repel each other.
Due to these properties, magnets are commonly used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them indispensable for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the materials used.
It should be noted that high temperatures can weaken the magnet's effect. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards and even medical equipment, like pacemakers. For this reason, it is important to exercise caution when using magnets.
List recommended items
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to immense strength, neodymium magnets have the following advantages:
- They do not lose their strength (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
- They are extremely resistant to demagnetization by external magnetic sources,
- Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
- They possess very high magnetic induction on the surface of the magnet,
- By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
- Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in many variants of shapes or sizes, which expands the range of their possible uses.
- Key role in the industry of new technologies – are used in computer drives, electric drive mechanisms, medical apparatus and various technologically advanced devices.
Disadvantages of neodymium magnets:
- They are prone to breaking as they are extremely fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
- High temperatures can reduce the power of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent reduction in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
- Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
- The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
- Potential hazard to health from tiny fragments of magnets can be dangerous, if swallowed, which becomes significant in the aspect of protecting young children. Additionally, miniscule components of these devices are able to hinder the diagnostic process in case of swallowing.
Notes with Neodymium Magnets
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a serious injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a severe pressure or a fracture.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Do not bring neodymium magnets close to GPS and smartphones.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets made of neodymium are highly susceptible to damage, resulting in their cracking.
Neodymium magnets are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.
In order to illustrate why neodymium magnets are so dangerous, read the article - How dangerous are very strong neodymium magnets?.