tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our offer. Practically all magnesy neodymowe in our store are in stock for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to buy strong magnet? Magnet holders in solid and airtight enclosure are perfect for use in challenging climate conditions, including in the rain and snow check...

magnetic holders

Holders with magnets can be used to improve production, exploring underwater areas, or searching for meteors from gold see...

Shipping is always shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 40x10x4 / N38 - lamellar magnet

lamellar magnet

Catalog no 020150

GTIN: 5906301811565

5

length [±0,1 mm]

40 mm

Width [±0,1 mm]

10 mm

Height [±0,1 mm]

4 mm

Weight

12 g

Magnetization Direction

↑ axial

Load capacity

6.32 kg / 61.98 N

Magnetic Induction

275.57 mT

Coating

[NiCuNi] nickel

4.87 with VAT / pcs + price for transport

3.96 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.96 ZŁ
4.87 ZŁ
price from 200 pcs
3.72 ZŁ
4.58 ZŁ
price from 650 pcs
3.48 ZŁ
4.29 ZŁ

Do you have questions?

Call us +48 22 499 98 98 otherwise drop us a message using inquiry form the contact page.
Weight along with form of magnets can be estimated with our force calculator.

Orders placed before 14:00 will be shipped the same business day.

MPL 40x10x4 / N38 - lamellar magnet

Specification/characteristics MPL 40x10x4 / N38 - lamellar magnet
properties
values
Cat. no.
020150
GTIN
5906301811565
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
40 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
12 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
6.32 kg / 61.98 N
Magnetic Induction ~ ?
275.57 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets i.e. MPL 40x10x4 / N38 are magnets created from neodymium in a rectangular form. They are known for their exceptionally potent magnetic properties, which surpass ordinary ferrite magnets.
Due to their strength, flat magnets are commonly used in devices that require strong holding power.
The standard temperature resistance of flat magnets is 80 °C, but with larger dimensions, this value can increase.
Additionally, flat magnets often have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, for enhancing their strength.
The magnet named MPL 40x10x4 / N38 i.e. a magnetic force 6.32 kg weighing just 12 grams, making it the ideal choice for applications requiring a flat shape.
Neodymium flat magnets offer a range of advantages compared to other magnet shapes, which lead to them being a perfect solution for many applications:
Contact surface: Due to their flat shape, flat magnets guarantee a larger contact surface with other components, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These are often applied in many devices, e.g. sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: Their flat shape simplifies mounting, particularly when it is necessary to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets gives the possibility creators a lot of flexibility in placing them in devices, which can be more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet may offer better stability, minimizing the risk of sliding or rotating. However, one should remember that the optimal shape of the magnet depends on the specific project and requirements. In certain cases, other shapes, such as cylindrical or spherical, are a better choice.
How do magnets work? Magnets attract objects made of ferromagnetic materials, such as iron elements, objects containing nickel, cobalt or special alloys of ferromagnetic metals. Moreover, magnets may lesser affect some other metals, such as steel. Magnets are used in many fields.
The operation of magnets is based on the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. The magnetic field of these objects creates attractive interactions, which affect materials containing nickel or other ferromagnetic substances.

Magnets have two main poles: north (N) and south (S), which attract each other when they are different. Similar poles, e.g. two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are commonly used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them perfect for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its size and the materials used.
Magnets do not attract plastics, glass, wooden materials and precious stones. Furthermore, magnets do not affect certain metals, such as copper items, aluminum materials, gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless exposed to a very strong magnetic field.
It’s worth noting that high temperatures can weaken the magnet's effect. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as compasses, magnetic stripe cards and even electronic devices sensitive to magnetic fields. Therefore, it is important to avoid placing magnets near such devices.
A flat magnet in classes N50 and N52 is a powerful and highly strong magnetic piece designed as a plate, that offers high force and versatile application. Good price, fast shipping, resistance and broad range of uses.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their exceptional strength, neodymium magnets offer the following advantages:

  • They retain their attractive force for nearly 10 years – the loss is just ~1% (according to analyses),
  • Their ability to resist magnetic interference from external fields is impressive,
  • Thanks to the shiny finish and silver coating, they have an elegant appearance,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • With the option for customized forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
  • Significant impact in advanced technical fields – they are used in HDDs, electric motors, medical equipment as well as other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them useful in miniature devices

Disadvantages of magnetic elements:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and additionally strengthens its overall robustness,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to moisture can degrade. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
  • Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is significant in the family environments. Moreover, miniature parts from these devices may hinder health screening if inside the body,
  • Due to the price of neodymium, their cost is relatively high,

Maximum magnetic pulling forcewhat affects it?

The given lifting capacity of the magnet means the maximum lifting force, determined under optimal conditions, namely:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • under standard ambient temperature

Key elements affecting lifting force

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under parallel forces the holding force is lower. In addition, even a small distance {between} the magnet’s surface and the plate reduces the load capacity.

Safety Precautions

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will crack or crumble with uncontrolled connecting to each other. You can't move them to each other. At a distance less than 10 cm you should hold them very firmly.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

 It is important to keep neodymium magnets out of reach from children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Magnets made of neodymium are known for being fragile, which can cause them to become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Safety precautions!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98