tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our proposal. All magnesy neodymowe in our store are available for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnets for searching F300 GOLD

Where to purchase very strong magnet? Holders with magnets in airtight, solid steel casing are ideally suited for use in variable and difficult climate conditions, including during snow and rain read...

magnetic holders

Holders with magnets can be used to improve manufacturing, underwater exploration, or locating meteorites made of metal check...

We promise to ship your order on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 40x10x4 / N38 - lamellar magnet

lamellar magnet

Catalog no 020150

GTIN: 5906301811565

5

length [±0,1 mm]

40 mm

Width [±0,1 mm]

10 mm

Height [±0,1 mm]

4 mm

Weight

12 g

Magnetization Direction

↑ axial

Load capacity

6.32 kg / 61.98 N

Magnetic Induction

275.57 mT

Coating

[NiCuNi] nickel

4.87 with VAT / pcs + price for transport

3.96 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.96 ZŁ
4.87 ZŁ
price from 200 pcs
3.72 ZŁ
4.58 ZŁ
price from 650 pcs
3.48 ZŁ
4.29 ZŁ

Looking for a better price?

Give us a call +48 22 499 98 98 otherwise drop us a message through our online form the contact form page.
Lifting power as well as appearance of neodymium magnets can be calculated with our magnetic mass calculator.

Orders placed before 14:00 will be shipped the same business day.

MPL 40x10x4 / N38 - lamellar magnet

Specification/characteristics MPL 40x10x4 / N38 - lamellar magnet
properties
values
Cat. no.
020150
GTIN
5906301811565
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
40 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
12 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
6.32 kg / 61.98 N
Magnetic Induction ~ ?
275.57 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets i.e. MPL 40x10x4 / N38 are magnets created from neodymium in a rectangular form. They are valued for their exceptionally potent magnetic properties, which are much stronger than ordinary ferrite magnets.
Due to their strength, flat magnets are commonly applied in products that require strong holding power.
Typical temperature resistance of flat magnets is 80°C, but with larger dimensions, this value rises.
Additionally, flat magnets usually have special coatings applied to their surfaces, such as nickel, gold, or chrome, to increase their corrosion resistance.
The magnet with the designation MPL 40x10x4 / N38 and a magnetic strength 6.32 kg which weighs a mere 12 grams, making it the excellent choice for applications requiring a flat shape.
Neodymium flat magnets provide a range of advantages compared to other magnet shapes, which lead to them being a perfect solution for many applications:
Contact surface: Thanks to their flat shape, flat magnets ensure a larger contact surface with other components, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: These magnets are often utilized in different devices, such as sensors, stepper motors, or speakers, where the thin and wide shape is crucial for their operation.
Mounting: This form's flat shape makes mounting, particularly when it is required to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets permits designers a lot of flexibility in placing them in structures, which is more difficult with magnets of more complex shapes.
Stability: In some applications, the flat base of the flat magnet can offer better stability, reducing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet is dependent on the specific project and requirements. In certain cases, other shapes, like cylindrical or spherical, may be a better choice.
Attracted by magnets are objects made of ferromagnetic materials, such as iron elements, nickel, materials with cobalt and special alloys of ferromagnetic metals. Moreover, magnets may lesser affect alloys containing iron, such as steel. Magnets are used in many fields.
The operation of magnets is based on the properties of their magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of magnets creates attractive interactions, which attract objects made of cobalt or other magnetic materials.

Magnets have two poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Poles of the same kind, e.g. two north poles, repel each other.
Thanks to this principle of operation, magnets are regularly used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the material it is made of.
Not all materials react to magnets, and examples of such substances are plastic, glass, wooden materials and precious stones. Additionally, magnets do not affect certain metals, such as copper, aluminum materials, copper, aluminum, and gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless they are subjected to an extremely strong magnetic field.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards and even medical equipment, like pacemakers. Therefore, it is important to avoid placing magnets near such devices.
A flat magnet in classes N52 and N50 is a powerful and strong metal object in the form of a plate, providing high force and universal applicability. Very good price, fast shipping, stability and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional pulling force, neodymium magnets offer the following advantages:

  • They do not lose their even over around 10 years – the reduction of strength is only ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is notable,
  • In other words, due to the metallic gold coating, the magnet obtains an aesthetic appearance,
  • Magnetic induction on the surface of these magnets is notably high,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • With the option for customized forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Significant impact in modern technologies – they are utilized in HDDs, electric drives, medical equipment and technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which makes them ideal in miniature devices

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to physical collisions, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall resistance,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of synthetic coating for outdoor use,
  • Limited ability to create internal holes in the magnet – the use of a housing is recommended,
  • Potential hazard due to small fragments may arise, if ingested accidentally, which is important in the protection of children. Additionally, small elements from these products may complicate medical imaging after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting force for a neodymium magnet – what contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, measured in the best circumstances, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with no separation
  • under perpendicular detachment force
  • under standard ambient temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under a perpendicular pulling force, in contrast under parallel forces the load capacity is reduced by as much as 75%. Moreover, even a slight gap {between} the magnet’s surface and the plate lowers the lifting capacity.

Handle with Care: Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are characterized by being fragile, which can cause them to become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

 Keep neodymium magnets far from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

If the joining of neodymium magnets is not under control, at that time they may crumble and crack. You can't approach them to each other. At a distance less than 10 cm you should hold them extremely firmly.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are the strongest magnets ever created, and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Warning!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98