Neodymium magnets: power you're looking for

Need strong magnetic field? We offer complete range of various shapes and sizes. Best choice for domestic applications, garage and industrial tasks. Browse assortment available immediately.

see full offer

Equipment for treasure hunters

Begin your hobby involving underwater treasure hunting! Our double-handle grips (F200, F400) provide grip certainty and huge lifting capacity. Solid, corrosion-resistant housing and reinforced ropes are reliable in rivers and lakes.

find your set

Industrial magnetic grips industrial

Proven solutions for fixing non-invasive. Threaded grips (external or internal) provide quick improvement of work on production halls. They are indispensable installing lighting, sensors and banners.

see industrial applications

🚚 Order by 14:00 – we'll ship same day!

Dhit sp. z o.o.
Product available Ships tomorrow

MPL 40x10x4 / N38 - lamellar magnet

lamellar magnet

Catalog no 020150

GTIN/EAN: 5906301811565

5.00

length

40 mm [±0,1 mm]

Width

10 mm [±0,1 mm]

Height

4 mm [±0,1 mm]

Weight

12 g

Magnetization Direction

↑ axial

Load capacity

9.31 kg / 91.33 N

Magnetic Induction

275.57 mT / 2756 Gs

Coating

[NiCuNi] Nickel

4.87 with VAT / pcs + price for transport

3.96 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.96 ZŁ
4.87 ZŁ
price from 200 pcs
3.72 ZŁ
4.58 ZŁ
price from 650 pcs
3.48 ZŁ
4.29 ZŁ
Looking for a better price?

Give us a call +48 888 99 98 98 otherwise contact us through our online form our website.
Lifting power along with form of magnetic components can be reviewed with our our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

Technical details - MPL 40x10x4 / N38 - lamellar magnet

Specification / characteristics - MPL 40x10x4 / N38 - lamellar magnet

properties
properties values
Cat. no. 020150
GTIN/EAN 5906301811565
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
length 40 mm [±0,1 mm]
Width 10 mm [±0,1 mm]
Height 4 mm [±0,1 mm]
Weight 12 g
Magnetization Direction ↑ axial
Load capacity ~ ? 9.31 kg / 91.33 N
Magnetic Induction ~ ? 275.57 mT / 2756 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MPL 40x10x4 / N38 - lamellar magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering simulation of the product - report

The following values represent the direct effect of a mathematical analysis. Values are based on algorithms for the material Nd2Fe14B. Operational parameters may differ. Please consider these calculations as a preliminary roadmap during assembly planning.

Table 1: Static force (force vs distance) - interaction chart
MPL 40x10x4 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 2755 Gs
275.5 mT
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
warning
1 mm 2413 Gs
241.3 mT
7.14 kg / 15.75 pounds
7143.1 g / 70.1 N
warning
2 mm 2044 Gs
204.4 mT
5.13 kg / 11.31 pounds
5128.9 g / 50.3 N
warning
3 mm 1703 Gs
170.3 mT
3.56 kg / 7.85 pounds
3559.5 g / 34.9 N
warning
5 mm 1173 Gs
117.3 mT
1.69 kg / 3.72 pounds
1688.2 g / 16.6 N
low risk
10 mm 522 Gs
52.2 mT
0.33 kg / 0.74 pounds
334.9 g / 3.3 N
low risk
15 mm 277 Gs
27.7 mT
0.09 kg / 0.21 pounds
94.2 g / 0.9 N
low risk
20 mm 163 Gs
16.3 mT
0.03 kg / 0.07 pounds
32.8 g / 0.3 N
low risk
30 mm 69 Gs
6.9 mT
0.01 kg / 0.01 pounds
5.8 g / 0.1 N
low risk
50 mm 19 Gs
1.9 mT
0.00 kg / 0.00 pounds
0.5 g / 0.0 N
low risk

Table 2: Vertical force (vertical surface)
MPL 40x10x4 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 1.86 kg / 4.11 pounds
1862.0 g / 18.3 N
1 mm Stal (~0.2) 1.43 kg / 3.15 pounds
1428.0 g / 14.0 N
2 mm Stal (~0.2) 1.03 kg / 2.26 pounds
1026.0 g / 10.1 N
3 mm Stal (~0.2) 0.71 kg / 1.57 pounds
712.0 g / 7.0 N
5 mm Stal (~0.2) 0.34 kg / 0.75 pounds
338.0 g / 3.3 N
10 mm Stal (~0.2) 0.07 kg / 0.15 pounds
66.0 g / 0.6 N
15 mm Stal (~0.2) 0.02 kg / 0.04 pounds
18.0 g / 0.2 N
20 mm Stal (~0.2) 0.01 kg / 0.01 pounds
6.0 g / 0.1 N
30 mm Stal (~0.2) 0.00 kg / 0.00 pounds
2.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 pounds
0.0 g / 0.0 N

Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MPL 40x10x4 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
2.79 kg / 6.16 pounds
2793.0 g / 27.4 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
1.86 kg / 4.11 pounds
1862.0 g / 18.3 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.93 kg / 2.05 pounds
931.0 g / 9.1 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
4.66 kg / 10.26 pounds
4655.0 g / 45.7 N

Table 4: Material efficiency (substrate influence) - power losses
MPL 40x10x4 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.93 kg / 2.05 pounds
931.0 g / 9.1 N
1 mm
25%
2.33 kg / 5.13 pounds
2327.5 g / 22.8 N
2 mm
50%
4.66 kg / 10.26 pounds
4655.0 g / 45.7 N
3 mm
75%
6.98 kg / 15.39 pounds
6982.5 g / 68.5 N
5 mm
100%
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
10 mm
100%
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
11 mm
100%
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
12 mm
100%
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N

Table 5: Working in heat (stability) - thermal limit
MPL 40x10x4 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
OK
40 °C -2.2% 9.11 kg / 20.07 pounds
9105.2 g / 89.3 N
OK
60 °C -4.4% 8.90 kg / 19.62 pounds
8900.4 g / 87.3 N
80 °C -6.6% 8.70 kg / 19.17 pounds
8695.5 g / 85.3 N
100 °C -28.8% 6.63 kg / 14.61 pounds
6628.7 g / 65.0 N

Table 6: Two magnets (attraction) - forces in the system
MPL 40x10x4 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Strength (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 18.71 kg / 41.25 pounds
4 164 Gs
2.81 kg / 6.19 pounds
2807 g / 27.5 N
N/A
1 mm 16.57 kg / 36.53 pounds
5 185 Gs
2.49 kg / 5.48 pounds
2486 g / 24.4 N
14.91 kg / 32.88 pounds
~0 Gs
2 mm 14.36 kg / 31.65 pounds
4 826 Gs
2.15 kg / 4.75 pounds
2153 g / 21.1 N
12.92 kg / 28.48 pounds
~0 Gs
3 mm 12.24 kg / 26.98 pounds
4 455 Gs
1.84 kg / 4.05 pounds
1836 g / 18.0 N
11.01 kg / 24.28 pounds
~0 Gs
5 mm 8.61 kg / 18.98 pounds
3 737 Gs
1.29 kg / 2.85 pounds
1291 g / 12.7 N
7.75 kg / 17.08 pounds
~0 Gs
10 mm 3.39 kg / 7.48 pounds
2 346 Gs
0.51 kg / 1.12 pounds
509 g / 5.0 N
3.05 kg / 6.73 pounds
~0 Gs
20 mm 0.67 kg / 1.48 pounds
1 045 Gs
0.10 kg / 0.22 pounds
101 g / 1.0 N
0.61 kg / 1.34 pounds
~0 Gs
50 mm 0.03 kg / 0.06 pounds
207 Gs
0.00 kg / 0.01 pounds
4 g / 0.0 N
0.02 kg / 0.05 pounds
~0 Gs
60 mm 0.01 kg / 0.03 pounds
138 Gs
0.00 kg / 0.00 pounds
2 g / 0.0 N
0.01 kg / 0.02 pounds
~0 Gs
70 mm 0.01 kg / 0.01 pounds
96 Gs
0.00 kg / 0.00 pounds
1 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
80 mm 0.00 kg / 0.01 pounds
69 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
90 mm 0.00 kg / 0.00 pounds
51 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
100 mm 0.00 kg / 0.00 pounds
39 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs

Table 7: Safety (HSE) (implants) - precautionary measures
MPL 40x10x4 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 8.5 cm
Hearing aid 10 Gs (1.0 mT) 6.5 cm
Mechanical watch 20 Gs (2.0 mT) 5.0 cm
Phone / Smartphone 40 Gs (4.0 mT) 4.0 cm
Remote 50 Gs (5.0 mT) 3.5 cm
Payment card 400 Gs (40.0 mT) 1.5 cm
HDD hard drive 600 Gs (60.0 mT) 1.0 cm

Table 8: Impact energy (cracking risk) - collision effects
MPL 40x10x4 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 28.72 km/h
(7.98 m/s)
0.38 J
30 mm 48.67 km/h
(13.52 m/s)
1.10 J
50 mm 62.82 km/h
(17.45 m/s)
1.83 J
100 mm 88.83 km/h
(24.68 m/s)
3.65 J

Table 9: Surface protection spec
MPL 40x10x4 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Flux)
MPL 40x10x4 / N38

Parameter Value SI Unit / Description
Magnetic Flux 9 840 Mx 98.4 µWb
Pc Coefficient 0.26 Low (Flat)

Table 11: Physics of underwater searching
MPL 40x10x4 / N38

Environment Effective steel pull Effect
Air (land) 9.31 kg Standard
Water (riverbed) 10.66 kg
(+1.35 kg buoyancy gain)
+14.5%
Warning: Remember to wipe the magnet thoroughly after removing it from water and apply a protective layer (e.g., oil) to avoid corrosion.
1. Wall mount (shear)

*Caution: On a vertical surface, the magnet retains just a fraction of its max power.

2. Steel thickness impact

*Thin steel (e.g. 0.5mm PC case) drastically weakens the holding force.

3. Temperature resistance

*For N38 material, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.26

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Chemical composition
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 020150-2026
Magnet Unit Converter
Magnet pull force

Magnetic Field

See more proposals

This product is a very powerful magnet in the shape of a plate made of NdFeB material, which, with dimensions of 40x10x4 mm and a weight of 12 g, guarantees the highest quality connection. As a magnetic bar with high power (approx. 9.31 kg), this product is available off-the-shelf from our warehouse in Poland. The durable anti-corrosion layer ensures a long lifespan in a dry environment, protecting the core from oxidation.
The key to success is sliding the magnets along their largest connection plane (using e.g., the edge of a table), which is easier than trying to tear them apart directly. Watch your fingers! Magnets with a force of 9.31 kg can pinch very hard and cause hematomas. Using a screwdriver risks destroying the coating and permanently cracking the magnet.
Plate magnets MPL 40x10x4 / N38 are the foundation for many industrial devices, such as filters catching filings and linear motors. They work great as invisible mounts under tiles, wood, or glass. Customers often choose this model for workshop organization on strips and for advanced DIY and modeling projects, where precision and power count.
Cyanoacrylate glues (super glue type) are good only for small magnets; for larger plates, we recommend resins. Double-sided tape cushions vibrations, which is an advantage when mounting in moving elements. Remember to roughen and wash the magnet surface before gluing, which significantly increases the adhesion of the glue to the nickel coating.
The magnetic axis runs through the shortest dimension, which is typical for gripper magnets. Thanks to this, it works best when "sticking" to sheet metal or another magnet with a large surface area. Such a pole arrangement ensures maximum holding capacity when pressing against the sheet, creating a closed magnetic circuit.
The presented product is a neodymium magnet with precisely defined parameters: 40 mm (length), 10 mm (width), and 4 mm (thickness). It is a magnetic block with dimensions 40x10x4 mm and a self-weight of 12 g, ready to work at temperatures up to 80°C. The protective [NiCuNi] coating secures the magnet against corrosion.

Pros as well as cons of neodymium magnets.

Advantages

Besides their remarkable strength, neodymium magnets offer the following advantages:
  • They have stable power, and over more than 10 years their performance decreases symbolically – ~1% (according to theory),
  • They have excellent resistance to magnetic field loss due to opposing magnetic fields,
  • In other words, due to the glossy surface of silver, the element looks attractive,
  • Magnetic induction on the working layer of the magnet turns out to be impressive,
  • Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
  • In view of the possibility of accurate shaping and customization to individualized needs, magnetic components can be modeled in a wide range of forms and dimensions, which amplifies use scope,
  • Universal use in modern industrial fields – they find application in hard drives, brushless drives, medical equipment, also modern systems.
  • Thanks to efficiency per cm³, small magnets offer high operating force, with minimal size,

Disadvantages

Disadvantages of NdFeB magnets:
  • To avoid cracks upon strong impacts, we recommend using special steel housings. Such a solution protects the magnet and simultaneously increases its durability.
  • Neodymium magnets lose their power under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
  • Due to the susceptibility of magnets to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic or other material stable to moisture, when using outdoors
  • Due to limitations in realizing nuts and complicated forms in magnets, we propose using casing - magnetic mount.
  • Health risk related to microscopic parts of magnets are risky, if swallowed, which gains importance in the context of child safety. Additionally, small elements of these products are able to complicate diagnosis medical in case of swallowing.
  • Due to complex production process, their price is relatively high,

Pull force analysis

Maximum holding power of the magnet – what affects it?

Information about lifting capacity was defined for ideal contact conditions, assuming:
  • with the contact of a yoke made of low-carbon steel, guaranteeing maximum field concentration
  • with a thickness no less than 10 mm
  • with an ideally smooth contact surface
  • without any insulating layer between the magnet and steel
  • during pulling in a direction perpendicular to the mounting surface
  • in neutral thermal conditions

Key elements affecting lifting force

Bear in mind that the application force may be lower subject to elements below, in order of importance:
  • Air gap (between the magnet and the metal), because even a very small distance (e.g. 0.5 mm) results in a drastic drop in force by up to 50% (this also applies to paint, rust or dirt).
  • Force direction – remember that the magnet holds strongest perpendicularly. Under sliding down, the capacity drops drastically, often to levels of 20-30% of the maximum value.
  • Substrate thickness – to utilize 100% power, the steel must be adequately massive. Thin sheet limits the lifting capacity (the magnet "punches through" it).
  • Material composition – not every steel attracts identically. Alloy additives weaken the attraction effect.
  • Surface quality – the smoother and more polished the plate, the larger the contact zone and stronger the hold. Roughness acts like micro-gaps.
  • Operating temperature – NdFeB sinters have a negative temperature coefficient. At higher temperatures they are weaker, and in frost they can be stronger (up to a certain limit).

Lifting capacity was determined using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, however under parallel forces the load capacity is reduced by as much as fivefold. In addition, even a small distance between the magnet’s surface and the plate decreases the load capacity.

Precautions when working with neodymium magnets
Serious injuries

Large magnets can smash fingers in a fraction of a second. Never put your hand between two attracting surfaces.

Magnet fragility

Protect your eyes. Magnets can fracture upon violent connection, ejecting sharp fragments into the air. Wear goggles.

Conscious usage

Exercise caution. Rare earth magnets act from a distance and connect with huge force, often quicker than you can move away.

Compass and GPS

An intense magnetic field interferes with the functioning of magnetometers in phones and navigation systems. Do not bring magnets near a device to prevent breaking the sensors.

ICD Warning

Health Alert: Neodymium magnets can turn off heart devices and defibrillators. Do not approach if you have medical devices.

Danger to the youngest

Product intended for adults. Small elements pose a choking risk, causing intestinal necrosis. Store away from kids and pets.

Do not drill into magnets

Machining of NdFeB material poses a fire risk. Neodymium dust reacts violently with oxygen and is difficult to extinguish.

Warning for allergy sufferers

Some people have a sensitization to nickel, which is the common plating for NdFeB magnets. Extended handling can result in dermatitis. It is best to use safety gloves.

Protect data

Do not bring magnets near a wallet, computer, or TV. The magnetic field can permanently damage these devices and wipe information from cards.

Power loss in heat

Regular neodymium magnets (N-type) lose power when the temperature exceeds 80°C. Damage is permanent.

Danger! Want to know more? Read our article: Why are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98