MPL 40x10x4 / N38 - lamellar magnet
lamellar magnet
Catalog no 020150
GTIN: 5906301811565
length [±0,1 mm]
40 mm
Width [±0,1 mm]
10 mm
Height [±0,1 mm]
4 mm
Weight
12 g
Magnetization Direction
↑ axial
Load capacity
6.32 kg / 61.98 N
Magnetic Induction
275.57 mT
Coating
[NiCuNi] nickel
4.87 ZŁ with VAT / pcs + price for transport
3.96 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Contact us by phone
+48 22 499 98 98
or contact us using
form
the contact page.
Lifting power as well as appearance of a magnet can be tested using our
power calculator.
Order by 14:00 and we’ll ship today!
MPL 40x10x4 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Due to their power, flat magnets are regularly applied in devices that need very strong attraction.
The standard temperature resistance of flat magnets is 80 °C, but depending on the dimensions, this value rises.
In addition, flat magnets commonly have different coatings applied to their surfaces, such as nickel, gold, or chrome, to increase their strength.
The magnet labeled MPL 40x10x4 / N38 i.e. a lifting capacity of 6.32 kg weighing a mere 12 grams, making it the perfect choice for applications requiring a flat shape.
Contact surface: Thanks to their flat shape, flat magnets ensure a larger contact surface with adjacent parts, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: These magnets are often applied in many devices, such as sensors, stepper motors, or speakers, where the flat shape is crucial for their operation.
Mounting: The flat form's flat shape makes mounting, especially when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets gives the possibility designers greater flexibility in placing them in structures, which is more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, reducing the risk of shifting or rotating. However, it's important to note that the optimal shape of the magnet is dependent on the specific project and requirements. In certain cases, other shapes, such as cylindrical or spherical, are more appropriate.
Magnets have two poles: north (N) and south (S), which attract each other when they are different. Poles of the same kind, such as two north poles, act repelling on each other.
Due to these properties, magnets are commonly used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them perfect for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the materials used.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards or medical equipment, like pacemakers. Therefore, it is important to exercise caution when using magnets.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They do not lose their power around 10 years – the decrease of power is only ~1% (theoretically),
- They are very resistant to demagnetization caused by external magnetic fields,
- Thanks to the polished finish and silver coating, they have an aesthetic appearance,
- They have extremely strong magnetic induction on the surface of the magnet,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which increases their functional possibilities,
- Important function in new technology industries – they are used in data storage devices, electric drives, healthcare devices and sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them useful in compact constructions
Disadvantages of magnetic elements:
- They are fragile when subjected to a strong impact. If the magnets are exposed to external force, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and additionally reinforces its overall robustness,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to damp air can corrode. Therefore, for outdoor applications, we advise waterproof types made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing fine shapes directly in the magnet,
- Safety concern linked to microscopic shards may arise, if ingested accidentally, which is significant in the protection of children. It should also be noted that tiny components from these assemblies might disrupt scanning if inside the body,
- In cases of mass production, neodymium magnet cost is a challenge,
Maximum lifting force for a neodymium magnet – what contributes to it?
The given lifting capacity of the magnet represents the maximum lifting force, calculated in the best circumstances, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- in a perpendicular direction of force
- in normal thermal conditions
Practical lifting capacity: influencing factors
In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under attempts to slide the magnet the holding force is lower. Additionally, even a slight gap {between} the magnet and the plate decreases the holding force.
Handle Neodymium Magnets Carefully
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets will jump and clash together within a distance of several to almost 10 cm from each other.
Neodymium magnets are the most powerful magnets ever created, and their power can shock you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets are particularly fragile, which leads to shattering.
Neodymium magnetic are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium magnets can demagnetize at high temperatures.
Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Safety precautions!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.
