MPL 40x10x4 / N38 - lamellar magnet
lamellar magnet
Catalog no 020150
GTIN/EAN: 5906301811565
length
40 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
12 g
Magnetization Direction
↑ axial
Load capacity
9.31 kg / 91.33 N
Magnetic Induction
275.57 mT / 2756 Gs
Coating
[NiCuNi] Nickel
4.87 ZŁ with VAT / pcs + price for transport
3.96 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
alternatively get in touch via
our online form
through our site.
Specifications along with shape of magnets can be estimated on our
online calculation tool.
Order by 14:00 and we’ll ship today!
Detailed specification - MPL 40x10x4 / N38 - lamellar magnet
Specification / characteristics - MPL 40x10x4 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020150 |
| GTIN/EAN | 5906301811565 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 40 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 12 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 9.31 kg / 91.33 N |
| Magnetic Induction ~ ? | 275.57 mT / 2756 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical modeling of the assembly - report
These information constitute the outcome of a physical analysis. Results rely on algorithms for the class Nd2Fe14B. Actual parameters may differ. Use these data as a supplementary guide when designing systems.
Table 1: Static force (force vs gap) - interaction chart
MPL 40x10x4 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2755 Gs
275.5 mT
|
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
|
strong |
| 1 mm |
2413 Gs
241.3 mT
|
7.14 kg / 15.75 pounds
7143.1 g / 70.1 N
|
strong |
| 2 mm |
2044 Gs
204.4 mT
|
5.13 kg / 11.31 pounds
5128.9 g / 50.3 N
|
strong |
| 3 mm |
1703 Gs
170.3 mT
|
3.56 kg / 7.85 pounds
3559.5 g / 34.9 N
|
strong |
| 5 mm |
1173 Gs
117.3 mT
|
1.69 kg / 3.72 pounds
1688.2 g / 16.6 N
|
low risk |
| 10 mm |
522 Gs
52.2 mT
|
0.33 kg / 0.74 pounds
334.9 g / 3.3 N
|
low risk |
| 15 mm |
277 Gs
27.7 mT
|
0.09 kg / 0.21 pounds
94.2 g / 0.9 N
|
low risk |
| 20 mm |
163 Gs
16.3 mT
|
0.03 kg / 0.07 pounds
32.8 g / 0.3 N
|
low risk |
| 30 mm |
69 Gs
6.9 mT
|
0.01 kg / 0.01 pounds
5.8 g / 0.1 N
|
low risk |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 pounds
0.5 g / 0.0 N
|
low risk |
Table 2: Slippage load (vertical surface)
MPL 40x10x4 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.86 kg / 4.11 pounds
1862.0 g / 18.3 N
|
| 1 mm | Stal (~0.2) |
1.43 kg / 3.15 pounds
1428.0 g / 14.0 N
|
| 2 mm | Stal (~0.2) |
1.03 kg / 2.26 pounds
1026.0 g / 10.1 N
|
| 3 mm | Stal (~0.2) |
0.71 kg / 1.57 pounds
712.0 g / 7.0 N
|
| 5 mm | Stal (~0.2) |
0.34 kg / 0.75 pounds
338.0 g / 3.3 N
|
| 10 mm | Stal (~0.2) |
0.07 kg / 0.15 pounds
66.0 g / 0.6 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.04 pounds
18.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.01 pounds
6.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - vertical pull
MPL 40x10x4 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
2.79 kg / 6.16 pounds
2793.0 g / 27.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.86 kg / 4.11 pounds
1862.0 g / 18.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 2.05 pounds
931.0 g / 9.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
4.66 kg / 10.26 pounds
4655.0 g / 45.7 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MPL 40x10x4 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 2.05 pounds
931.0 g / 9.1 N
|
| 1 mm |
|
2.33 kg / 5.13 pounds
2327.5 g / 22.8 N
|
| 2 mm |
|
4.66 kg / 10.26 pounds
4655.0 g / 45.7 N
|
| 3 mm |
|
6.98 kg / 15.39 pounds
6982.5 g / 68.5 N
|
| 5 mm |
|
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
|
| 10 mm |
|
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
|
| 11 mm |
|
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
|
| 12 mm |
|
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
|
Table 5: Thermal stability (stability) - power drop
MPL 40x10x4 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.31 kg / 20.53 pounds
9310.0 g / 91.3 N
|
OK |
| 40 °C | -2.2% |
9.11 kg / 20.07 pounds
9105.2 g / 89.3 N
|
OK |
| 60 °C | -4.4% |
8.90 kg / 19.62 pounds
8900.4 g / 87.3 N
|
|
| 80 °C | -6.6% |
8.70 kg / 19.17 pounds
8695.5 g / 85.3 N
|
|
| 100 °C | -28.8% |
6.63 kg / 14.61 pounds
6628.7 g / 65.0 N
|
Table 6: Magnet-Magnet interaction (attraction) - field range
MPL 40x10x4 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
18.71 kg / 41.25 pounds
4 164 Gs
|
2.81 kg / 6.19 pounds
2807 g / 27.5 N
|
N/A |
| 1 mm |
16.57 kg / 36.53 pounds
5 185 Gs
|
2.49 kg / 5.48 pounds
2486 g / 24.4 N
|
14.91 kg / 32.88 pounds
~0 Gs
|
| 2 mm |
14.36 kg / 31.65 pounds
4 826 Gs
|
2.15 kg / 4.75 pounds
2153 g / 21.1 N
|
12.92 kg / 28.48 pounds
~0 Gs
|
| 3 mm |
12.24 kg / 26.98 pounds
4 455 Gs
|
1.84 kg / 4.05 pounds
1836 g / 18.0 N
|
11.01 kg / 24.28 pounds
~0 Gs
|
| 5 mm |
8.61 kg / 18.98 pounds
3 737 Gs
|
1.29 kg / 2.85 pounds
1291 g / 12.7 N
|
7.75 kg / 17.08 pounds
~0 Gs
|
| 10 mm |
3.39 kg / 7.48 pounds
2 346 Gs
|
0.51 kg / 1.12 pounds
509 g / 5.0 N
|
3.05 kg / 6.73 pounds
~0 Gs
|
| 20 mm |
0.67 kg / 1.48 pounds
1 045 Gs
|
0.10 kg / 0.22 pounds
101 g / 1.0 N
|
0.61 kg / 1.34 pounds
~0 Gs
|
| 50 mm |
0.03 kg / 0.06 pounds
207 Gs
|
0.00 kg / 0.01 pounds
4 g / 0.0 N
|
0.02 kg / 0.05 pounds
~0 Gs
|
| 60 mm |
0.01 kg / 0.03 pounds
138 Gs
|
0.00 kg / 0.00 pounds
2 g / 0.0 N
|
0.01 kg / 0.02 pounds
~0 Gs
|
| 70 mm |
0.01 kg / 0.01 pounds
96 Gs
|
0.00 kg / 0.00 pounds
1 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 pounds
69 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 pounds
51 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 pounds
39 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
Table 7: Hazards (electronics) - warnings
MPL 40x10x4 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 8.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 6.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 5.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 4.0 cm |
| Remote | 50 Gs (5.0 mT) | 3.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (kinetic energy) - warning
MPL 40x10x4 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
28.72 km/h
(7.98 m/s)
|
0.38 J | |
| 30 mm |
48.67 km/h
(13.52 m/s)
|
1.10 J | |
| 50 mm |
62.82 km/h
(17.45 m/s)
|
1.83 J | |
| 100 mm |
88.83 km/h
(24.68 m/s)
|
3.65 J |
Table 9: Anti-corrosion coating durability
MPL 40x10x4 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MPL 40x10x4 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 9 840 Mx | 98.4 µWb |
| Pc Coefficient | 0.26 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 40x10x4 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 9.31 kg | Standard |
| Water (riverbed) |
10.66 kg
(+1.35 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical wall, the magnet holds only ~20% of its nominal pull.
2. Steel saturation
*Thin steel (e.g. 0.5mm PC case) drastically weakens the holding force.
3. Power loss vs temp
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.26
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other offers
Advantages as well as disadvantages of rare earth magnets.
Strengths
- Their power remains stable, and after around 10 years it decreases only by ~1% (theoretically),
- Neodymium magnets are highly resistant to loss of magnetic properties caused by external interference,
- A magnet with a metallic silver surface is more attractive,
- Neodymium magnets ensure maximum magnetic induction on a contact point, which increases force concentration,
- Through (appropriate) combination of ingredients, they can achieve high thermal resistance, allowing for functioning at temperatures approaching 230°C and above...
- Considering the possibility of flexible forming and adaptation to individualized projects, magnetic components can be modeled in a variety of forms and dimensions, which increases their versatility,
- Wide application in innovative solutions – they are utilized in data components, motor assemblies, precision medical tools, as well as industrial machines.
- Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications
Weaknesses
- At very strong impacts they can break, therefore we recommend placing them in strong housings. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- We warn that neodymium magnets can reduce their power at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
- Due to the susceptibility of magnets to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic or other material immune to moisture, in case of application outdoors
- We recommend cover - magnetic holder, due to difficulties in realizing threads inside the magnet and complex forms.
- Possible danger to health – tiny shards of magnets pose a threat, in case of ingestion, which gains importance in the aspect of protecting the youngest. Furthermore, tiny parts of these magnets can complicate diagnosis medical in case of swallowing.
- High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which hinders application in large quantities
Pull force analysis
Optimal lifting capacity of a neodymium magnet – what it depends on?
- with the use of a sheet made of low-carbon steel, ensuring full magnetic saturation
- possessing a thickness of at least 10 mm to avoid saturation
- characterized by even structure
- under conditions of gap-free contact (metal-to-metal)
- during pulling in a direction perpendicular to the mounting surface
- at ambient temperature room level
Determinants of practical lifting force of a magnet
- Space between surfaces – even a fraction of a millimeter of distance (caused e.g. by varnish or unevenness) diminishes the magnet efficiency, often by half at just 0.5 mm.
- Loading method – declared lifting capacity refers to pulling vertically. When applying parallel force, the magnet exhibits significantly lower power (typically approx. 20-30% of maximum force).
- Wall thickness – thin material does not allow full use of the magnet. Part of the magnetic field penetrates through instead of converting into lifting capacity.
- Material composition – not every steel attracts identically. High carbon content worsen the interaction with the magnet.
- Surface finish – full contact is obtained only on polished steel. Any scratches and bumps reduce the real contact area, weakening the magnet.
- Temperature – heating the magnet causes a temporary drop of force. It is worth remembering the maximum operating temperature for a given model.
Lifting capacity was determined by applying a polished steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, whereas under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Moreover, even a slight gap between the magnet and the plate reduces the lifting capacity.
Precautions when working with neodymium magnets
Danger to the youngest
Product intended for adults. Tiny parts can be swallowed, leading to serious injuries. Store out of reach of children and animals.
Fire warning
Mechanical processing of neodymium magnets carries a risk of fire risk. Neodymium dust oxidizes rapidly with oxygen and is hard to extinguish.
Handling rules
Before use, read the rules. Uncontrolled attraction can break the magnet or injure your hand. Be predictive.
Shattering risk
Despite the nickel coating, the material is delicate and cannot withstand shocks. Do not hit, as the magnet may shatter into sharp, dangerous pieces.
Crushing force
Large magnets can break fingers in a fraction of a second. Under no circumstances put your hand between two attracting surfaces.
Nickel coating and allergies
Some people suffer from a sensitization to Ni, which is the typical protective layer for NdFeB magnets. Prolonged contact can result in a rash. It is best to use protective gloves.
GPS and phone interference
A strong magnetic field disrupts the operation of compasses in smartphones and navigation systems. Keep magnets near a smartphone to prevent breaking the sensors.
Keep away from computers
Avoid bringing magnets close to a wallet, computer, or screen. The magnetism can destroy these devices and erase data from cards.
Life threat
For implant holders: Strong magnetic fields disrupt medical devices. Maintain minimum 30 cm distance or request help to handle the magnets.
Power loss in heat
Regular neodymium magnets (N-type) lose power when the temperature exceeds 80°C. This process is irreversible.
