tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our store's offer. All magnesy neodymowe in our store are in stock for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for fishing F200 GOLD

Where to purchase powerful magnet? Magnet holders in airtight, solid steel enclosure are excellent for use in variable and difficult weather, including during rain and snow check...

magnetic holders

Holders with magnets can be used to facilitate manufacturing, underwater exploration, or searching for meteors from gold see...

Enjoy delivery of your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 3x3x3 / N38 - lamellar magnet

lamellar magnet

Catalog no 020148

GTIN: 5906301811541

5

length [±0,1 mm]

3 mm

Width [±0,1 mm]

3 mm

Height [±0,1 mm]

3 mm

Weight

0.2 g

Magnetization Direction

↑ axial

Load capacity

0.71 kg / 6.96 N

Magnetic Induction

538.48 mT

Coating

[NiCuNi] nickel

0.16 with VAT / pcs + price for transport

0.13 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.13 ZŁ
0.16 ZŁ
price from 600 pcs
0.12 ZŁ
0.15 ZŁ
price from 2200 pcs
0.11 ZŁ
0.14 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 3x3x3 / N38 - lamellar magnet

Specification/characteristics MPL 3x3x3 / N38 - lamellar magnet
properties
values
Cat. no.
020148
GTIN
5906301811541
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
3 mm [±0,1 mm]
Width
3 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
0.2 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.71 kg / 6.96 N
Magnetic Induction ~ ?
538.48 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets min. MPL 3x3x3 / N38 are magnets made from neodymium in a rectangular form. They are known for their extremely powerful magnetic properties, which outshine ordinary iron magnets.
Thanks to their mighty power, flat magnets are commonly used in products that need very strong attraction.
The standard temperature resistance of flat magnets is 80 °C, but depending on the dimensions, this value rises.
Moreover, flat magnets commonly have special coatings applied to their surfaces, such as nickel, gold, or chrome, for enhancing their strength.
The magnet with the designation MPL 3x3x3 / N38 i.e. a magnetic strength 0.71 kg weighing only 0.2 grams, making it the excellent choice for projects needing a flat magnet.
Neodymium flat magnets present a range of advantages compared to other magnet shapes, which lead to them being the best choice for various uses:
Contact surface: Due to their flat shape, flat magnets ensure a larger contact surface with adjacent parts, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: They are often utilized in various devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is crucial for their operation.
Mounting: Their flat shape simplifies mounting, particularly when it is necessary to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets allows designers a lot of flexibility in placing them in devices, which can be more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet can provide better stability, minimizing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet depends on the given use and requirements. In some cases, other shapes, like cylindrical or spherical, are a better choice.
Magnets attract objects made of ferromagnetic materials, such as iron elements, objects containing nickel, cobalt or special alloys of ferromagnetic metals. Moreover, magnets may weaker affect some other metals, such as steel. Magnets are used in many fields.
Magnets work thanks to the properties of the magnetic field, which is generated by the movement of electric charges within their material. The magnetic field of these objects creates attractive interactions, which affect objects made of iron or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which attract each other when they are oppositely oriented. Similar poles, such as two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are commonly used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its size and the materials used.
Not all materials react to magnets, and examples of such substances are plastics, glass, wooden materials or precious stones. Additionally, magnets do not affect certain metals, such as copper, aluminum materials, gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless exposed to a very strong magnetic field.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as compasses, credit cards and even electronic devices sensitive to magnetic fields. For this reason, it is important to exercise caution when using magnets.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time. After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic sources extremely well,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by very high magnetic induction on the surface of the magnet and can operate (depending on the shape) even at temperatures of 230°C or higher...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
  • Significant importance in modern technologies – are utilized in HDD drives, electric motors, medical apparatus or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Potential hazard associated with microscopic parts of magnets are risky, when accidentally ingested, which is particularly important in the context of child safety. Furthermore, miniscule components of these magnets are able to be problematic in medical diagnosis after entering the body.

Caution with Neodymium Magnets

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If have a finger between or on the path of attracting magnets, there may be a large cut or a fracture.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnetic are extremely fragile, resulting in breaking.

Neodymium magnetic are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are the most powerful magnets ever invented. Their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

  Neodymium magnets should not be in the vicinity youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Exercise caution!

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98