e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. Practically all "neodymium magnets" on our website are available for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to purchase strong magnet? Magnetic holders in solid and airtight steel casing are perfect for use in variable and difficult weather conditions, including during rain and snow read...

magnets with holders

Magnetic holders can be applied to enhance manufacturing, underwater discoveries, or searching for meteorites made of ore more information...

Shipping is shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x300 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130300

GTIN: 5906301812937

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

300 mm

Weight

1610 g

897.90 with VAT / pcs + price for transport

730.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
730.00 ZŁ
897.90 ZŁ
price from 5 pcs
693.50 ZŁ
853.01 ZŁ
price from 10 pcs
657.00 ZŁ
808.11 ZŁ

Want to talk magnets?

Give us a call +48 22 499 98 98 alternatively get in touch via contact form the contact page.
Parameters as well as shape of magnets can be estimated on our magnetic calculator.

Order by 14:00 and we’ll ship today!

SM 32x300 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x300 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130300
GTIN
5906301812937
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
300 mm [±0,1 mm]
Weight
1610 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are welded in a construction made of stainless steel mostly AISI304. In this way, it is possible to effectively segregate ferromagnetic elements from the mixture. An important element of its operation is the repulsion of magnetic poles N and S, which allows magnetic substances to be targeted. The thickness of the embedded magnet and its structure pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic particles. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are used in the food sector to remove metallic contaminants, for example iron fragments or iron dust. Our rollers are made from acid-resistant steel, AISI 304, intended for use in food.
Magnetic rollers, often called magnetic separators, find application in metal separation, food production as well as waste processing. They help in removing iron dust during the process of separating metals from other materials.
Our magnetic rollers consist of a neodymium magnet placed in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded openings, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in two materials, N42 as well as N52.
Usually it is believed that the greater the magnet's power, the more effective. But, the value of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be more compressed. Otherwise, when the magnet is thick, the force lines are extended and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, frequently stainless steel is employed, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, type AISI 316 steel is recommended thanks to its exceptional anti-corrosion properties.
Magnetic bars stand out for their specific arrangement of poles and their capability to attract magnetic substances directly onto their surface, in contrast to other devices that often use complex filtration systems.
Technical designations and terms related to magnetic separators include among others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. On the other hand, among the drawbacks, one can mention higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth regularly cleaning them from deposits, avoiding high temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can rust and weaken. Magnetic field measurements is recommended be carried out once every 24 months. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (based on calculations),
  • They are very resistant to demagnetization caused by external magnetic sources,
  • Because of the brilliant layer of silver, the component looks visually appealing,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • With the option for customized forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
  • Wide application in cutting-edge sectors – they find application in computer drives, electric motors, diagnostic apparatus along with technologically developed systems,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall resistance,
  • They lose strength at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to moisture can rust. Therefore, for outdoor applications, we suggest waterproof types made of non-metallic composites,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing complex structures directly in the magnet,
  • Possible threat from tiny pieces may arise, when consumed by mistake, which is significant in the protection of children. Furthermore, tiny components from these devices can complicate medical imaging if inside the body,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Detachment force of the magnet in optimal conditionswhat affects it?

The given lifting capacity of the magnet represents the maximum lifting force, calculated in the best circumstances, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with no separation
  • in a perpendicular direction of force
  • in normal thermal conditions

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the holding force.

Exercise Caution with Neodymium Magnets

Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or in their path when they attract. Magnets, depending on their size, can even cut off a finger or alternatively there can be a severe pressure or a fracture.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnets are fragile and can easily break and get damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 Maintain neodymium magnets far from children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Safety precautions!

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98