e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnetic Nd2Fe14B - our offer. All magnesy on our website are in stock for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnets for water searching F300 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in airtight and durable steel casing are perfect for use in difficult weather conditions, including during snow and rain see...

magnets with holders

Magnetic holders can be used to enhance manufacturing, underwater exploration, or searching for meteorites made of metal read...

We promise to ship your order on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships today (order by 14:00)

SM 32x300 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130300

GTIN: 5906301812937

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

300 mm

Weight

1610 g

897.90 with VAT / pcs + price for transport

730.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
730.00 ZŁ
897.90 ZŁ
price from 5 pcs
693.50 ZŁ
853.01 ZŁ
price from 10 pcs
657.00 ZŁ
808.11 ZŁ

Want to negotiate?

Call us +48 888 99 98 98 otherwise drop us a message via our online form through our site.
Strength along with appearance of a magnet can be reviewed with our online calculation tool.

Orders submitted before 14:00 will be dispatched today!

SM 32x300 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x300 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130300
GTIN
5906301812937
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
300 mm [±0,1 mm]
Weight
1610 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This product serves to catch ferromagnetic impurities from raw materials. It is installed in chutes and hoppers to protect production machinery. Thanks to the use of strong neodymium magnets, the rod catches even fine metal dust.
The outer layer is polished acid-resistant steel, approved for food contact. The core is a magnetic circuit generating high induction. Such construction ensures resistance to corrosion, water, and acids.
Metal impurities are strongly attracted, making manual removal difficult. You can use compressed air or special non-magnetic strippers. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
Magnetic induction measured in Gauss (Gs) determines the magnetic flux density on the rod surface. For basic iron protection, standard power is enough. High Power versions (~12000-14000 Gs) are necessary to catch metal dust and stainless steel after processing.
We fulfill custom orders for bars matched to your machine. The rod end is adapted to the mounting system in your separator. Contact us for a quote on non-standard dimensions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They have stable power, and over nearly 10 years their attraction force decreases symbolically – ~1% (according to theory),
  • They remain magnetized despite exposure to magnetic noise,
  • By applying a bright layer of nickel, the element gains a modern look,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
  • The ability for accurate shaping as well as adaptation to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
  • Wide application in new technology industries – they serve a purpose in hard drives, electric drives, clinical machines and high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time strengthens its overall robustness,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment – during outdoor use, we recommend using sealed magnets, such as those made of rubber,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Possible threat linked to microscopic shards may arise, in case of ingestion, which is notable in the health of young users. It should also be noted that minuscule fragments from these devices have the potential to interfere with diagnostics after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum magnetic pulling forcewhat it depends on?

The given strength of the magnet corresponds to the optimal strength, determined in the best circumstances, namely:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with zero air gap
  • with vertical force applied
  • under standard ambient temperature

Impact of factors on magnetic holding capacity in practice

The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a steel plate with a smooth surface of optimal thickness (min. 20 mm), under vertically applied force, however under shearing force the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate reduces the load capacity.

Handle Neodymium Magnets with Caution

Neodymium magnetic are fragile as well as can easily break and shatter.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Neodymium magnets jump and also touch each other mutually within a distance of several to around 10 cm from each other.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

 It is important to keep neodymium magnets out of reach from children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Exercise caution!

In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98