SM 32x300 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130300
GTIN: 5906301812937
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
300 mm
Weight
1610 g
897.90 ZŁ with VAT / pcs + price for transport
730.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Give us a call
+48 888 99 98 98
if you prefer contact us via
form
the contact form page.
Specifications as well as form of a magnet can be tested on our
modular calculator.
Same-day shipping for orders placed before 14:00.
SM 32x300 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- Their strength is maintained, and after around ten years, it drops only by ~1% (theoretically),
- They are very resistant to demagnetization caused by external field interference,
- The use of a polished gold surface provides a smooth finish,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for tailored forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
- Wide application in cutting-edge sectors – they find application in computer drives, rotating machines, clinical machines along with sophisticated instruments,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also strengthens its overall robustness,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a wet environment – during outdoor use, we recommend using waterproof magnets, such as those made of non-metallic materials,
- Limited ability to create threads in the magnet – the use of a housing is recommended,
- Possible threat due to small fragments may arise, when consumed by mistake, which is notable in the family environments. Additionally, small elements from these magnets may interfere with diagnostics after being swallowed,
- Due to expensive raw materials, their cost is considerably higher,
Maximum magnetic pulling force – what affects it?
The given strength of the magnet represents the optimal strength, calculated in the best circumstances, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- under perpendicular detachment force
- at room temperature
Practical lifting capacity: influencing factors
In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed with the use of a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, in contrast under shearing force the load capacity is reduced by as much as fivefold. Moreover, even a minimal clearance {between} the magnet and the plate decreases the lifting capacity.
Handle with Care: Neodymium Magnets
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are fragile and can easily crack and get damaged.
Neodymium magnetic are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Magnets are not toys, children should not play with them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
If you have a finger between or alternatively on the path of attracting magnets, there may be a large cut or even a fracture.
Caution!
In order to illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are strong neodymium magnets?.