e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our store's offer. Practically all "magnets" in our store are available for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnet for fishing F200 GOLD

Where to buy strong magnet? Magnet holders in airtight, solid steel enclosure are ideally suited for use in challenging weather, including during snow and rain see more...

magnets with holders

Magnetic holders can be applied to improve manufacturing, underwater exploration, or locating space rocks from gold see...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o.
Product available Ships tomorrow

SM 32x300 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130300

GTIN: 5906301812937

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

300 mm

Weight

1610 g

897.90 with VAT / pcs + price for transport

730.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
730.00 ZŁ
897.90 ZŁ
price from 5 pcs
693.50 ZŁ
853.01 ZŁ
price from 10 pcs
657.00 ZŁ
808.11 ZŁ

Not sure which magnet to buy?

Give us a call +48 22 499 98 98 alternatively send us a note by means of inquiry form the contact section.
Force along with form of a neodymium magnet can be reviewed using our modular calculator.

Same-day processing for orders placed before 14:00.

SM 32x300 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x300 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130300
GTIN
5906301812937
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
300 mm [±0,1 mm]
Weight
1610 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic rod is the basic building block of grate separators. Its task is to separate metal filings from the transported material. Thanks to the use of strong neodymium magnets, the rod catches even fine metal dust.
The construction is based on a sealed stainless steel housing. The center is filled with NdFeB magnets arranged to maximize the field on the surface. Thanks to this, the rod is durable and hygienic.
Metal impurities are strongly attracted, making manual removal difficult. The most effective method is using adhesive tape to wrap the dirt and pull it off. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
The more Gauss, the smaller and weakly magnetic particles will be caught. Standard rods (~8000 Gs) are sufficient for bolts, nails, and chips. High induction is required when contaminants are microscopic.
Yes, as a manufacturer, we make rods of any length and diameter (standard is 25mm and 32mm). We offer various tip options: threaded holes (e.g., M8, M10), protruding screws, flat studs, or handles. Contact us for a quote on non-standard dimensions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous pulling force, neodymium magnets offer the following advantages:

  • Their power is durable, and after around 10 years, it drops only by ~1% (theoretically),
  • They protect against demagnetization induced by surrounding electromagnetic environments very well,
  • In other words, due to the metallic nickel coating, the magnet obtains an stylish appearance,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • With the right combination of materials, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
  • The ability for precise shaping as well as adaptation to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Wide application in cutting-edge sectors – they are utilized in computer drives, rotating machines, healthcare devices or even technologically developed systems,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to external force, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage while also strengthens its overall resistance,
  • They lose magnetic force at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of rubber for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a housing is recommended,
  • Possible threat due to small fragments may arise, in case of ingestion, which is notable in the protection of children. Additionally, minuscule fragments from these products might disrupt scanning if inside the body,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Breakaway strength of the magnet in ideal conditionswhat affects it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, calculated in ideal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • in a perpendicular direction of force
  • under standard ambient temperature

Key elements affecting lifting force

The lifting capacity of a magnet is determined by in practice the following factors, according to their importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, however under shearing force the holding force is lower. Moreover, even a small distance {between} the magnet and the plate lowers the lifting capacity.

Handle with Care: Neodymium Magnets

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If have a finger between or on the path of attracting magnets, there may be a serious cut or a fracture.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Magnets made of neodymium are fragile and can easily break as well as shatter.

Neodymium magnetic are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Caution!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98