tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. All magnesy neodymowe in our store are available for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnets for treasure hunters F400 GOLD

Where to purchase powerful magnet? Magnet holders in airtight and durable steel casing are ideally suited for use in variable and difficult weather conditions, including during snow and rain more...

magnetic holders

Holders with magnets can be used to facilitate production, underwater exploration, or locating meteorites from gold see...

Order always shipped if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 35x7x3 / N38 - lamellar magnet

lamellar magnet

Catalog no 020145

GTIN: 5906301811510

5

length [±0,1 mm]

35 mm

Width [±0,1 mm]

7 mm

Height [±0,1 mm]

3 mm

Weight

5.51 g

Magnetization Direction

↑ axial

Load capacity

3.71 kg / 36.38 N

Magnetic Induction

285.96 mT

Coating

[NiCuNi] nickel

2.99 with VAT / pcs + price for transport

2.43 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.43 ZŁ
2.99 ZŁ
price from 520 pcs
2.19 ZŁ
2.69 ZŁ
price from 2080 pcs
2.14 ZŁ
2.63 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 35x7x3 / N38 - lamellar magnet

Specification/characteristics MPL 35x7x3 / N38 - lamellar magnet
properties
values
Cat. no.
020145
GTIN
5906301811510
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
35 mm [±0,1 mm]
Width
7 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
5.51 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
3.71 kg / 36.38 N
Magnetic Induction ~ ?
285.96 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets i.e. MPL 35x7x3 / N38 are magnets made from neodymium in a rectangular form. They are known for their extremely powerful magnetic properties, which surpass traditional iron magnets.
Due to their power, flat magnets are regularly applied in devices that need exceptional adhesion.
The standard temperature resistance of flat magnets is 80°C, but with larger dimensions, this value grows.
In addition, flat magnets usually have different coatings applied to their surfaces, such as nickel, gold, or chrome, to improve their strength.
The magnet with the designation MPL 35x7x3 / N38 i.e. a magnetic strength 3.71 kg weighing just 5.51 grams, making it the excellent choice for projects needing a flat magnet.
Neodymium flat magnets provide a range of advantages versus other magnet shapes, which lead to them being an ideal choice for a multitude of projects:
Contact surface: Due to their flat shape, flat magnets guarantee a greater contact surface with other components, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These are often applied in various devices, e.g. sensors, stepper motors, or speakers, where the flat shape is crucial for their operation.
Mounting: Their flat shape simplifies mounting, particularly when it is necessary to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets permits designers greater flexibility in placing them in devices, which can be more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet may offer better stability, minimizing the risk of sliding or rotating. However, one should remember that the optimal shape of the magnet depends on the specific application and requirements. In some cases, other shapes, such as cylindrical or spherical, are more appropriate.
Attracted by magnets are ferromagnetic materials, such as iron elements, objects containing nickel, materials with cobalt or alloys of metals with magnetic properties. Additionally, magnets may lesser affect some other metals, such as steel. Magnets are used in many fields.
Magnets work thanks to the properties of their magnetic field, which is generated by the movement of electric charges within their material. The magnetic field of these objects creates attractive forces, which attract objects made of nickel or other ferromagnetic substances.

Magnets have two main poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Similar poles, such as two north poles, repel each other.
Due to these properties, magnets are commonly used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them perfect for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its size and the materials used.
Magnets do not attract plastics, glass items, wood and most gemstones. Furthermore, magnets do not affect most metals, such as copper, aluminum materials, copper, aluminum, and gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless they are subjected to an extremely strong magnetic field.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards and even medical equipment, like pacemakers. For this reason, it is important to exercise caution when using magnets.
A neodymium plate magnet N52 and N50 is a strong and extremely powerful metal object shaped like a plate, that provides strong holding power and versatile application. Attractive price, availability, ruggedness and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their remarkable pulling force, neodymium magnets offer the following advantages:

  • They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (according to literature),
  • Their ability to resist magnetic interference from external fields is among the best,
  • By applying a reflective layer of silver, the element gains a modern look,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • The ability for custom shaping or adaptation to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
  • Wide application in modern technologies – they are utilized in hard drives, rotating machines, healthcare devices or even other advanced devices,
  • Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of neodymium magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall robustness,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a damp environment. If exposed to rain, we recommend using waterproof magnets, such as those made of polymer,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing fine shapes directly in the magnet,
  • Health risk due to small fragments may arise, in case of ingestion, which is important in the family environments. Furthermore, small elements from these devices might disrupt scanning after being swallowed,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Exercise Caution with Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets bounce and clash mutually within a distance of several to around 10 cm from each other.

Neodymium magnets are particularly delicate, resulting in damage.

Neodymium magnets are fragile as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

 Maintain neodymium magnets away from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Warning!

So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98