MPL 35x7x3 / N38 - lamellar magnet
lamellar magnet
Catalog no 020145
GTIN/EAN: 5906301811510
length
35 mm [±0,1 mm]
Width
7 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
5.51 g
Magnetization Direction
↑ axial
Load capacity
6.21 kg / 60.89 N
Magnetic Induction
285.96 mT / 2860 Gs
Coating
[NiCuNi] Nickel
2.99 ZŁ with VAT / pcs + price for transport
2.43 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
otherwise drop us a message through
request form
the contact form page.
Strength and structure of neodymium magnets can be checked on our
our magnetic calculator.
Order by 14:00 and we’ll ship today!
Technical - MPL 35x7x3 / N38 - lamellar magnet
Specification / characteristics - MPL 35x7x3 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020145 |
| GTIN/EAN | 5906301811510 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 35 mm [±0,1 mm] |
| Width | 7 mm [±0,1 mm] |
| Height | 3 mm [±0,1 mm] |
| Weight | 5.51 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 6.21 kg / 60.89 N |
| Magnetic Induction ~ ? | 285.96 mT / 2860 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the magnet - data
These information represent the outcome of a engineering calculation. Values are based on models for the material Nd2Fe14B. Real-world parameters may deviate from the simulation results. Treat these data as a supplementary guide when designing systems.
Table 1: Static force (pull vs distance) - power drop
MPL 35x7x3 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2858 Gs
285.8 mT
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
medium risk |
| 1 mm |
2328 Gs
232.8 mT
|
4.12 kg / 9.09 lbs
4121.1 g / 40.4 N
|
medium risk |
| 2 mm |
1801 Gs
180.1 mT
|
2.47 kg / 5.44 lbs
2467.6 g / 24.2 N
|
medium risk |
| 3 mm |
1376 Gs
137.6 mT
|
1.44 kg / 3.18 lbs
1440.7 g / 14.1 N
|
weak grip |
| 5 mm |
832 Gs
83.2 mT
|
0.53 kg / 1.16 lbs
526.9 g / 5.2 N
|
weak grip |
| 10 mm |
318 Gs
31.8 mT
|
0.08 kg / 0.17 lbs
77.1 g / 0.8 N
|
weak grip |
| 15 mm |
158 Gs
15.8 mT
|
0.02 kg / 0.04 lbs
18.9 g / 0.2 N
|
weak grip |
| 20 mm |
89 Gs
8.9 mT
|
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
weak grip |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
weak grip |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
weak grip |
Table 2: Shear hold (wall)
MPL 35x7x3 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.24 kg / 2.74 lbs
1242.0 g / 12.2 N
|
| 1 mm | Stal (~0.2) |
0.82 kg / 1.82 lbs
824.0 g / 8.1 N
|
| 2 mm | Stal (~0.2) |
0.49 kg / 1.09 lbs
494.0 g / 4.8 N
|
| 3 mm | Stal (~0.2) |
0.29 kg / 0.63 lbs
288.0 g / 2.8 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 0.23 lbs
106.0 g / 1.0 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MPL 35x7x3 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
1.86 kg / 4.11 lbs
1863.0 g / 18.3 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.24 kg / 2.74 lbs
1242.0 g / 12.2 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.62 kg / 1.37 lbs
621.0 g / 6.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
3.11 kg / 6.85 lbs
3105.0 g / 30.5 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MPL 35x7x3 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.62 kg / 1.37 lbs
621.0 g / 6.1 N
|
| 1 mm |
|
1.55 kg / 3.42 lbs
1552.5 g / 15.2 N
|
| 2 mm |
|
3.11 kg / 6.85 lbs
3105.0 g / 30.5 N
|
| 3 mm |
|
4.66 kg / 10.27 lbs
4657.5 g / 45.7 N
|
| 5 mm |
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
| 10 mm |
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
| 11 mm |
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
| 12 mm |
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
Table 5: Working in heat (material behavior) - resistance threshold
MPL 35x7x3 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
OK |
| 40 °C | -2.2% |
6.07 kg / 13.39 lbs
6073.4 g / 59.6 N
|
OK |
| 60 °C | -4.4% |
5.94 kg / 13.09 lbs
5936.8 g / 58.2 N
|
|
| 80 °C | -6.6% |
5.80 kg / 12.79 lbs
5800.1 g / 56.9 N
|
|
| 100 °C | -28.8% |
4.42 kg / 9.75 lbs
4421.5 g / 43.4 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field range
MPL 35x7x3 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
12.34 kg / 27.19 lbs
4 231 Gs
|
1.85 kg / 4.08 lbs
1850 g / 18.2 N
|
N/A |
| 1 mm |
10.25 kg / 22.59 lbs
5 209 Gs
|
1.54 kg / 3.39 lbs
1537 g / 15.1 N
|
9.22 kg / 20.33 lbs
~0 Gs
|
| 2 mm |
8.19 kg / 18.05 lbs
4 656 Gs
|
1.23 kg / 2.71 lbs
1228 g / 12.0 N
|
7.37 kg / 16.24 lbs
~0 Gs
|
| 3 mm |
6.38 kg / 14.07 lbs
4 110 Gs
|
0.96 kg / 2.11 lbs
957 g / 9.4 N
|
5.74 kg / 12.66 lbs
~0 Gs
|
| 5 mm |
3.74 kg / 8.25 lbs
3 149 Gs
|
0.56 kg / 1.24 lbs
562 g / 5.5 N
|
3.37 kg / 7.43 lbs
~0 Gs
|
| 10 mm |
1.05 kg / 2.31 lbs
1 665 Gs
|
0.16 kg / 0.35 lbs
157 g / 1.5 N
|
0.94 kg / 2.08 lbs
~0 Gs
|
| 20 mm |
0.15 kg / 0.34 lbs
637 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.30 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
109 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
71 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
34 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - precautionary measures
MPL 35x7x3 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 6.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 5.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 4.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 3.0 cm |
| Remote | 50 Gs (5.0 mT) | 3.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Collisions (cracking risk) - warning
MPL 35x7x3 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
34.12 km/h
(9.48 m/s)
|
0.25 J | |
| 30 mm |
58.65 km/h
(16.29 m/s)
|
0.73 J | |
| 50 mm |
75.71 km/h
(21.03 m/s)
|
1.22 J | |
| 100 mm |
107.07 km/h
(29.74 m/s)
|
2.44 J |
Table 9: Corrosion resistance
MPL 35x7x3 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 35x7x3 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 5 851 Mx | 58.5 µWb |
| Pc Coefficient | 0.25 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MPL 35x7x3 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 6.21 kg | Standard |
| Water (riverbed) |
7.11 kg
(+0.90 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Note: On a vertical surface, the magnet retains merely ~20% of its perpendicular strength.
2. Plate thickness effect
*Thin metal sheet (e.g. computer case) significantly reduces the holding force.
3. Power loss vs temp
*For N38 material, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.25
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other offers
Pros as well as cons of rare earth magnets.
Advantages
- They retain attractive force for almost 10 years – the loss is just ~1% (according to analyses),
- They show high resistance to demagnetization induced by external magnetic fields,
- Thanks to the reflective finish, the plating of Ni-Cu-Ni, gold-plated, or silver-plated gives an clean appearance,
- Neodymium magnets create maximum magnetic induction on a small surface, which ensures high operational effectiveness,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
- Due to the potential of precise shaping and customization to individualized needs, neodymium magnets can be modeled in a wide range of shapes and sizes, which amplifies use scope,
- Fundamental importance in electronics industry – they are used in computer drives, electric motors, medical equipment, and industrial machines.
- Thanks to their power density, small magnets offer high operating force, occupying minimum space,
Weaknesses
- To avoid cracks under impact, we suggest using special steel housings. Such a solution protects the magnet and simultaneously improves its durability.
- Neodymium magnets lose their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- They oxidize in a humid environment - during use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- We recommend cover - magnetic mechanism, due to difficulties in producing threads inside the magnet and complicated forms.
- Health risk related to microscopic parts of magnets are risky, if swallowed, which is particularly important in the aspect of protecting the youngest. It is also worth noting that small components of these magnets can complicate diagnosis medical in case of swallowing.
- With budget limitations the cost of neodymium magnets can be a barrier,
Pull force analysis
Detachment force of the magnet in optimal conditions – what it depends on?
- on a block made of mild steel, effectively closing the magnetic field
- possessing a thickness of minimum 10 mm to avoid saturation
- with a surface perfectly flat
- under conditions of gap-free contact (metal-to-metal)
- under perpendicular force direction (90-degree angle)
- in temp. approx. 20°C
Impact of factors on magnetic holding capacity in practice
- Clearance – existence of foreign body (paint, dirt, air) acts as an insulator, which lowers capacity rapidly (even by 50% at 0.5 mm).
- Force direction – catalog parameter refers to pulling vertically. When applying parallel force, the magnet holds significantly lower power (often approx. 20-30% of maximum force).
- Element thickness – to utilize 100% power, the steel must be adequately massive. Thin sheet limits the attraction force (the magnet "punches through" it).
- Steel grade – ideal substrate is pure iron steel. Stainless steels may attract less.
- Surface finish – full contact is possible only on smooth steel. Rough texture create air cushions, reducing force.
- Heat – neodymium magnets have a sensitivity to temperature. At higher temperatures they are weaker, and at low temperatures gain strength (up to a certain limit).
Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, whereas under parallel forces the load capacity is reduced by as much as fivefold. Additionally, even a small distance between the magnet and the plate reduces the load capacity.
Precautions when working with NdFeB magnets
Warning for allergy sufferers
Studies show that nickel (standard magnet coating) is a strong allergen. For allergy sufferers, prevent direct skin contact and opt for encased magnets.
Threat to navigation
Note: rare earth magnets produce a field that disrupts precision electronics. Keep a separation from your phone, device, and navigation systems.
Electronic hazard
Do not bring magnets close to a purse, computer, or TV. The magnetism can irreversibly ruin these devices and erase data from cards.
Fragile material
Neodymium magnets are sintered ceramics, which means they are fragile like glass. Clashing of two magnets leads to them cracking into small pieces.
Finger safety
Protect your hands. Two large magnets will join instantly with a force of several hundred kilograms, destroying anything in their path. Exercise extreme caution!
Fire warning
Machining of neodymium magnets carries a risk of fire hazard. Magnetic powder reacts violently with oxygen and is hard to extinguish.
Medical interference
Life threat: Strong magnets can turn off heart devices and defibrillators. Do not approach if you have electronic implants.
Safe operation
Handle magnets consciously. Their huge power can shock even experienced users. Plan your moves and do not underestimate their power.
Heat warning
Watch the temperature. Heating the magnet to high heat will permanently weaken its magnetic structure and strength.
Swallowing risk
Absolutely store magnets out of reach of children. Ingestion danger is high, and the effects of magnets clamping inside the body are tragic.
