tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our store's offer. Practically all magnesy on our website are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F200 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in solid and airtight steel casing are excellent for use in difficult, demanding weather, including during rain and snow read...

magnetic holders

Magnetic holders can be used to facilitate production, underwater discoveries, or searching for space rocks made of ore more...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 35x7x3 / N38 - lamellar magnet

lamellar magnet

Catalog no 020145

GTIN: 5906301811510

5

length [±0,1 mm]

35 mm

Width [±0,1 mm]

7 mm

Height [±0,1 mm]

3 mm

Weight

5.51 g

Magnetization Direction

↑ axial

Load capacity

3.71 kg / 36.38 N

Magnetic Induction

285.96 mT

Coating

[NiCuNi] nickel

2.99 with VAT / pcs + price for transport

2.43 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.43 ZŁ
2.99 ZŁ
price from 520 pcs
2.19 ZŁ
2.69 ZŁ
price from 2080 pcs
2.14 ZŁ
2.63 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 35x7x3 / N38 - lamellar magnet

Specification/characteristics MPL 35x7x3 / N38 - lamellar magnet
properties
values
Cat. no.
020145
GTIN
5906301811510
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
35 mm [±0,1 mm]
Width
7 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
5.51 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
3.71 kg / 36.38 N
Magnetic Induction ~ ?
285.96 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets min. MPL 35x7x3 / N38 are magnets created from neodymium in a flat form. They are appreciated for their very strong magnetic properties, which surpass ordinary ferrite magnets.
Due to their strength, flat magnets are regularly applied in structures that require exceptional adhesion.
The standard temperature resistance of these magnets is 80°C, but with larger dimensions, this value grows.
In addition, flat magnets usually have special coatings applied to their surfaces, such as nickel, gold, or chrome, for enhancing their corrosion resistance.
The magnet named MPL 35x7x3 / N38 and a magnetic strength 3.71 kg with a weight of only 5.51 grams, making it the excellent choice for projects needing a flat magnet.
Neodymium flat magnets present a range of advantages compared to other magnet shapes, which make them being an ideal choice for various uses:
Contact surface: Due to their flat shape, flat magnets guarantee a greater contact surface with other components, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: These magnets are often utilized in various devices, such as sensors, stepper motors, or speakers, where the thin and wide shape is crucial for their operation.
Mounting: The flat form's flat shape makes mounting, particularly when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets gives the possibility designers a lot of flexibility in placing them in structures, which is more difficult with magnets of more complex shapes.
Stability: In some applications, the flat base of the flat magnet may offer better stability, reducing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet is dependent on the specific application and requirements. In some cases, other shapes, such as cylindrical or spherical, are more appropriate.
Magnets attract objects made of ferromagnetic materials, such as iron, objects containing nickel, materials with cobalt or alloys of metals with magnetic properties. Moreover, magnets may weaker affect some other metals, such as steel. Magnets are used in many fields.
Magnets work thanks to the properties of their magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of these objects creates attractive interactions, which attract materials containing nickel or other magnetic materials.

Magnets have two main poles: north (N) and south (S), which attract each other when they are different. Poles of the same kind, such as two north poles, act repelling on each other.
Due to these properties, magnets are often used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them ideal for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its size and the material it is made of.
Magnets do not attract plastic, glass, wood or precious stones. Moreover, magnets do not affect certain metals, such as copper items, aluminum materials, gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless they are subjected to an extremely strong magnetic field.
It should be noted that high temperatures can weaken the magnet's effect. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards or medical equipment, like pacemakers. For this reason, it is important to avoid placing magnets near such devices.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose power over time - after approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic field extremely well,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in various forms and dimensions, which amplifies their universality in usage.
  • Significant importance in advanced technologically fields – find application in computer drives, electric drive mechanisms, medical equipment or very highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, it is suggested using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent reduction in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Possible danger arising from small pieces of magnets can be dangerous, when accidentally ingested, which becomes significant in the context of child safety. Furthermore, miniscule components of these magnets can complicate diagnosis when they are in the body.

Exercise Caution with Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will crack or crumble with careless joining to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.

  Neodymium magnets should not be around youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnetic are particularly delicate, resulting in their breakage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Caution!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98