tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our proposal. All "magnets" in our store are available for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnets for treasure hunters F200 GOLD

Where to buy strong neodymium magnet? Magnet holders in solid and airtight enclosure are perfect for use in challenging weather conditions, including during rain and snow see more...

magnetic holders

Magnetic holders can be applied to enhance production, exploring underwater areas, or locating meteorites from gold more information...

We promise to ship your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGGW 34x8 [M4] GW / N38 - magnetic holder rubber internal thread

magnetic holder rubber internal thread

Catalog no 160306

GTIN: 5906301813644

5

Diameter Ø [±0,1 mm]

34 mm

Height [±0,1 mm]

8 mm

Weight

22 g

Load capacity

7.7 kg / 75.51 N

9.84 with VAT / pcs + price for transport

8.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
8.00 ZŁ
9.84 ZŁ
price from 50 pcs
7.52 ZŁ
9.25 ZŁ
price from 100 pcs
7.04 ZŁ
8.66 ZŁ

Want to talk magnets?

Contact us by phone +48 22 499 98 98 if you prefer drop us a message through form the contact page.
Strength and structure of neodymium magnets can be tested using our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

UMGGW 34x8 [M4] GW / N38 - magnetic holder rubber internal thread

Specification/characteristics UMGGW 34x8 [M4] GW / N38 - magnetic holder rubber internal thread
properties
values
Cat. no.
160306
GTIN
5906301813644
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
34 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
22 g [±0,1 mm]
Load capacity ~ ?
7.7 kg / 75.51 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic holders with rubber coating featuring an internal thread are applied in multiple fields, from production to domestic use. They are made of a powerful NdFeB magnet, embedded in a rubber casing, which shields the magnet from damage and improves grip on smooth surfaces.
No! Magnetic holders should not be used for people with implanted cardiac devices, as the strong magnetic field may interfere with their function. In such cases, we recommend using alternative fastening methods — we offer two such types in our range.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetism, neodymium magnets have these key benefits:

  • They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
  • Their ability to resist magnetic interference from external fields is notable,
  • The use of a polished gold surface provides a eye-catching finish,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for accurate shaping as well as adaptation to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Key role in advanced technical fields – they serve a purpose in HDDs, electric motors, medical equipment or even high-tech tools,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They can break when subjected to a strong impact. If the magnets are exposed to mechanical hits, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture and enhances its overall durability,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of rubber for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is significant in the protection of children. Additionally, small elements from these products might hinder health screening once in the system,
  • In cases of mass production, neodymium magnet cost may not be economically viable,

Maximum lifting force for a neodymium magnet – what contributes to it?

The given pulling force of the magnet represents the maximum force, determined in a perfect environment, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • at room temperature

Lifting capacity in practice – influencing factors

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under parallel forces the holding force is lower. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the load capacity.

Handle Neodymium Magnets with Caution

 Maintain neodymium magnets away from children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnetic are delicate as well as can easily crack and shatter.

Magnets made of neodymium are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Depending on how massive the neodymium magnets are, they can lead to a cut or a fracture.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Warning!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98