MPL 35x35x10 / N38 - lamellar magnet
lamellar magnet
Catalog no 020144
GTIN/EAN: 5906301811503
length
35 mm [±0,1 mm]
Width
35 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
91.88 g
Magnetization Direction
↑ axial
Load capacity
26.88 kg / 263.71 N
Magnetic Induction
282.90 mT / 2829 Gs
Coating
[NiCuNi] Nickel
35.10 ZŁ with VAT / pcs + price for transport
28.54 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 888 99 98 98
or let us know by means of
our online form
the contact page.
Parameters and shape of neodymium magnets can be verified using our
online calculation tool.
Order by 14:00 and we’ll ship today!
Physical properties - MPL 35x35x10 / N38 - lamellar magnet
Specification / characteristics - MPL 35x35x10 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020144 |
| GTIN/EAN | 5906301811503 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 35 mm [±0,1 mm] |
| Width | 35 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 91.88 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 26.88 kg / 263.71 N |
| Magnetic Induction ~ ? | 282.90 mT / 2829 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the assembly - report
The following values constitute the outcome of a physical analysis. Results were calculated on models for the class Nd2Fe14B. Real-world parameters might slightly deviate from the simulation results. Use these calculations as a preliminary roadmap for designers.
Table 1: Static pull force (pull vs gap) - power drop
MPL 35x35x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2829 Gs
282.9 mT
|
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
critical level |
| 1 mm |
2727 Gs
272.7 mT
|
24.98 kg / 55.08 lbs
24982.7 g / 245.1 N
|
critical level |
| 2 mm |
2613 Gs
261.3 mT
|
22.94 kg / 50.57 lbs
22939.0 g / 225.0 N
|
critical level |
| 3 mm |
2491 Gs
249.1 mT
|
20.84 kg / 45.95 lbs
20841.0 g / 204.4 N
|
critical level |
| 5 mm |
2232 Gs
223.2 mT
|
16.73 kg / 36.88 lbs
16730.5 g / 164.1 N
|
critical level |
| 10 mm |
1600 Gs
160.0 mT
|
8.60 kg / 18.96 lbs
8600.7 g / 84.4 N
|
strong |
| 15 mm |
1102 Gs
110.2 mT
|
4.08 kg / 9.00 lbs
4082.9 g / 40.1 N
|
strong |
| 20 mm |
757 Gs
75.7 mT
|
1.93 kg / 4.25 lbs
1925.7 g / 18.9 N
|
low risk |
| 30 mm |
376 Gs
37.6 mT
|
0.48 kg / 1.05 lbs
475.7 g / 4.7 N
|
low risk |
| 50 mm |
122 Gs
12.2 mT
|
0.05 kg / 0.11 lbs
49.9 g / 0.5 N
|
low risk |
Table 2: Shear hold (wall)
MPL 35x35x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
5.38 kg / 11.85 lbs
5376.0 g / 52.7 N
|
| 1 mm | Stal (~0.2) |
5.00 kg / 11.01 lbs
4996.0 g / 49.0 N
|
| 2 mm | Stal (~0.2) |
4.59 kg / 10.11 lbs
4588.0 g / 45.0 N
|
| 3 mm | Stal (~0.2) |
4.17 kg / 9.19 lbs
4168.0 g / 40.9 N
|
| 5 mm | Stal (~0.2) |
3.35 kg / 7.38 lbs
3346.0 g / 32.8 N
|
| 10 mm | Stal (~0.2) |
1.72 kg / 3.79 lbs
1720.0 g / 16.9 N
|
| 15 mm | Stal (~0.2) |
0.82 kg / 1.80 lbs
816.0 g / 8.0 N
|
| 20 mm | Stal (~0.2) |
0.39 kg / 0.85 lbs
386.0 g / 3.8 N
|
| 30 mm | Stal (~0.2) |
0.10 kg / 0.21 lbs
96.0 g / 0.9 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MPL 35x35x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
8.06 kg / 17.78 lbs
8064.0 g / 79.1 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
5.38 kg / 11.85 lbs
5376.0 g / 52.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
2.69 kg / 5.93 lbs
2688.0 g / 26.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
13.44 kg / 29.63 lbs
13440.0 g / 131.8 N
|
Table 4: Material efficiency (substrate influence) - power losses
MPL 35x35x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.34 kg / 2.96 lbs
1344.0 g / 13.2 N
|
| 1 mm |
|
3.36 kg / 7.41 lbs
3360.0 g / 33.0 N
|
| 2 mm |
|
6.72 kg / 14.82 lbs
6720.0 g / 65.9 N
|
| 3 mm |
|
10.08 kg / 22.22 lbs
10080.0 g / 98.9 N
|
| 5 mm |
|
16.80 kg / 37.04 lbs
16800.0 g / 164.8 N
|
| 10 mm |
|
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
| 11 mm |
|
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
| 12 mm |
|
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
Table 5: Thermal stability (stability) - resistance threshold
MPL 35x35x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
OK |
| 40 °C | -2.2% |
26.29 kg / 57.96 lbs
26288.6 g / 257.9 N
|
OK |
| 60 °C | -4.4% |
25.70 kg / 56.65 lbs
25697.3 g / 252.1 N
|
|
| 80 °C | -6.6% |
25.11 kg / 55.35 lbs
25105.9 g / 246.3 N
|
|
| 100 °C | -28.8% |
19.14 kg / 42.19 lbs
19138.6 g / 187.7 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MPL 35x35x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
60.43 kg / 133.22 lbs
4 428 Gs
|
9.06 kg / 19.98 lbs
9064 g / 88.9 N
|
N/A |
| 1 mm |
58.36 kg / 128.67 lbs
5 560 Gs
|
8.75 kg / 19.30 lbs
8754 g / 85.9 N
|
52.53 kg / 115.80 lbs
~0 Gs
|
| 2 mm |
56.16 kg / 123.82 lbs
5 454 Gs
|
8.42 kg / 18.57 lbs
8424 g / 82.6 N
|
50.55 kg / 111.44 lbs
~0 Gs
|
| 3 mm |
53.89 kg / 118.81 lbs
5 343 Gs
|
8.08 kg / 17.82 lbs
8084 g / 79.3 N
|
48.50 kg / 106.93 lbs
~0 Gs
|
| 5 mm |
49.22 kg / 108.50 lbs
5 106 Gs
|
7.38 kg / 16.28 lbs
7382 g / 72.4 N
|
44.29 kg / 97.65 lbs
~0 Gs
|
| 10 mm |
37.61 kg / 82.92 lbs
4 463 Gs
|
5.64 kg / 12.44 lbs
5642 g / 55.3 N
|
33.85 kg / 74.63 lbs
~0 Gs
|
| 20 mm |
19.33 kg / 42.63 lbs
3 200 Gs
|
2.90 kg / 6.39 lbs
2900 g / 28.5 N
|
17.40 kg / 38.36 lbs
~0 Gs
|
| 50 mm |
2.10 kg / 4.64 lbs
1 056 Gs
|
0.32 kg / 0.70 lbs
316 g / 3.1 N
|
1.89 kg / 4.18 lbs
~0 Gs
|
| 60 mm |
1.07 kg / 2.36 lbs
753 Gs
|
0.16 kg / 0.35 lbs
160 g / 1.6 N
|
0.96 kg / 2.12 lbs
~0 Gs
|
| 70 mm |
0.57 kg / 1.26 lbs
550 Gs
|
0.09 kg / 0.19 lbs
86 g / 0.8 N
|
0.51 kg / 1.13 lbs
~0 Gs
|
| 80 mm |
0.32 kg / 0.70 lbs
411 Gs
|
0.05 kg / 0.11 lbs
48 g / 0.5 N
|
0.29 kg / 0.63 lbs
~0 Gs
|
| 90 mm |
0.19 kg / 0.41 lbs
313 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.37 lbs
~0 Gs
|
| 100 mm |
0.11 kg / 0.25 lbs
244 Gs
|
0.02 kg / 0.04 lbs
17 g / 0.2 N
|
0.10 kg / 0.22 lbs
~0 Gs
|
Table 7: Safety (HSE) (implants) - precautionary measures
MPL 35x35x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 16.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 13.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 10.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 8.0 cm |
| Remote | 50 Gs (5.0 mT) | 7.5 cm |
| Payment card | 400 Gs (40.0 mT) | 3.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 2.5 cm |
Table 8: Dynamics (cracking risk) - warning
MPL 35x35x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
20.41 km/h
(5.67 m/s)
|
1.48 J | |
| 30 mm |
30.21 km/h
(8.39 m/s)
|
3.23 J | |
| 50 mm |
38.62 km/h
(10.73 m/s)
|
5.29 J | |
| 100 mm |
54.55 km/h
(15.15 m/s)
|
10.55 J |
Table 9: Surface protection spec
MPL 35x35x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MPL 35x35x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 38 021 Mx | 380.2 µWb |
| Pc Coefficient | 0.35 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 35x35x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 26.88 kg | Standard |
| Water (riverbed) |
30.78 kg
(+3.90 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Note: On a vertical wall, the magnet holds only approx. 20-30% of its max power.
2. Plate thickness effect
*Thin metal sheet (e.g. 0.5mm PC case) significantly limits the holding force.
3. Thermal stability
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.35
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other proposals
Advantages as well as disadvantages of neodymium magnets.
Pros
- They virtually do not lose strength, because even after 10 years the performance loss is only ~1% (according to literature),
- Magnets effectively defend themselves against loss of magnetization caused by external fields,
- The use of an elegant layer of noble metals (nickel, gold, silver) causes the element to be more visually attractive,
- The surface of neodymium magnets generates a strong magnetic field – this is a distinguishing feature,
- Neodymium magnets are characterized by very high magnetic induction on the magnet surface and can work (depending on the shape) even at a temperature of 230°C or more...
- Due to the option of flexible shaping and adaptation to individualized requirements, neodymium magnets can be manufactured in a variety of geometric configurations, which expands the range of possible applications,
- Universal use in high-tech industry – they serve a role in mass storage devices, motor assemblies, precision medical tools, also complex engineering applications.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Disadvantages
- At strong impacts they can break, therefore we advise placing them in special holders. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- Neodymium magnets lose their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we advise using waterproof magnets made of rubber, plastic or other material immune to moisture, when using outdoors
- We recommend casing - magnetic holder, due to difficulties in realizing nuts inside the magnet and complicated shapes.
- Potential hazard related to microscopic parts of magnets are risky, if swallowed, which becomes key in the context of child health protection. Furthermore, tiny parts of these magnets can disrupt the diagnostic process medical after entering the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Pull force analysis
Maximum lifting force for a neodymium magnet – what contributes to it?
- using a plate made of mild steel, acting as a ideal flux conductor
- with a cross-section no less than 10 mm
- with a surface perfectly flat
- without any insulating layer between the magnet and steel
- for force applied at a right angle (pull-off, not shear)
- at ambient temperature room level
Practical lifting capacity: influencing factors
- Distance – existence of foreign body (paint, tape, air) acts as an insulator, which reduces capacity rapidly (even by 50% at 0.5 mm).
- Force direction – catalog parameter refers to detachment vertically. When slipping, the magnet exhibits much less (typically approx. 20-30% of maximum force).
- Wall thickness – thin material does not allow full use of the magnet. Part of the magnetic field penetrates through instead of converting into lifting capacity.
- Metal type – different alloys attracts identically. High carbon content weaken the interaction with the magnet.
- Surface structure – the more even the plate, the better the adhesion and higher the lifting capacity. Roughness acts like micro-gaps.
- Thermal conditions – NdFeB sinters have a sensitivity to temperature. When it is hot they lose power, and in frost gain strength (up to a certain limit).
Lifting capacity testing was carried out on a smooth plate of optimal thickness, under perpendicular forces, however under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Moreover, even a slight gap between the magnet and the plate decreases the load capacity.
H&S for magnets
Finger safety
Big blocks can smash fingers instantly. Do not put your hand betwixt two strong magnets.
Do not underestimate power
Before use, check safety instructions. Uncontrolled attraction can destroy the magnet or injure your hand. Think ahead.
Thermal limits
Keep cool. Neodymium magnets are sensitive to temperature. If you need resistance above 80°C, inquire about special high-temperature series (H, SH, UH).
Metal Allergy
Some people experience a hypersensitivity to Ni, which is the standard coating for neodymium magnets. Prolonged contact can result in dermatitis. We strongly advise wear safety gloves.
Product not for children
Absolutely store magnets away from children. Choking hazard is significant, and the effects of magnets connecting inside the body are tragic.
Do not drill into magnets
Fire hazard: Neodymium dust is explosive. Do not process magnets in home conditions as this may cause fire.
Risk of cracking
Neodymium magnets are sintered ceramics, meaning they are very brittle. Impact of two magnets will cause them shattering into shards.
Keep away from electronics
Remember: rare earth magnets generate a field that confuses sensitive sensors. Keep a safe distance from your phone, tablet, and GPS.
Data carriers
Data protection: Neodymium magnets can ruin payment cards and delicate electronics (pacemakers, hearing aids, mechanical watches).
Pacemakers
For implant holders: Powerful magnets affect electronics. Keep minimum 30 cm distance or request help to handle the magnets.
