tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. Practically all magnesy in our store are in stock for immediate delivery (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase very strong magnet? Magnetic holders in airtight and durable steel casing are excellent for use in difficult weather conditions, including in the rain and snow see...

magnets with holders

Holders with magnets can be used to facilitate production, underwater exploration, or searching for meteorites from gold check...

Enjoy delivery of your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 35x35x10 / N38 - lamellar magnet

lamellar magnet

Catalog no 020144

GTIN: 5906301811503

0

length [±0,1 mm]

35 mm

Width [±0,1 mm]

35 mm

Height [±0,1 mm]

10 mm

Weight

91.88 g

Magnetization Direction

↑ axial

Load capacity

27.64 kg / 271.06 N

Magnetic Induction

282.90 mT

Coating

[NiCuNi] nickel

47.00 with VAT / pcs + price for transport

38.21 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
38.21 ZŁ
47.00 ZŁ
price from 600 pcs
35.92 ZŁ
44.18 ZŁ
price from 2200 pcs
33.62 ZŁ
41.36 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 35x35x10 / N38 - lamellar magnet

Specification/characteristics MPL 35x35x10 / N38 - lamellar magnet
properties
values
Cat. no.
020144
GTIN
5906301811503
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
35 mm [±0,1 mm]
Width
35 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
91.88 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
27.64 kg / 271.06 N
Magnetic Induction ~ ?
282.90 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets min. MPL 35x35x10 / N38 are magnets created from neodymium in a flat form. They are valued for their exceptionally potent magnetic properties, which are much stronger than standard ferrite magnets.
Due to their power, flat magnets are frequently applied in products that need exceptional adhesion.
Typical temperature resistance of flat magnets is 80°C, but with larger dimensions, this value grows.
In addition, flat magnets commonly have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, to improve their durability.
The magnet with the designation MPL 35x35x10 / N38 i.e. a magnetic strength 27.64 kg which weighs a mere 91.88 grams, making it the perfect choice for projects needing a flat magnet.
Neodymium flat magnets provide a range of advantages versus other magnet shapes, which make them being an ideal choice for many applications:
Contact surface: Thanks to their flat shape, flat magnets ensure a greater contact surface with other components, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These magnets are often used in various devices, e.g. sensors, stepper motors, or speakers, where the flat shape is crucial for their operation.
Mounting: The flat form's flat shape makes it easier mounting, especially when it is necessary to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets gives the possibility designers greater flexibility in placing them in devices, which can be more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet may provide better stability, minimizing the risk of shifting or rotating. However, it's important to note that the optimal shape of the magnet depends on the given use and requirements. In certain cases, other shapes, such as cylindrical or spherical, may be a better choice.
Attracted by magnets are objects made of ferromagnetic materials, such as iron, objects containing nickel, materials with cobalt and alloys of metals with magnetic properties. Additionally, magnets may lesser affect alloys containing iron, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
Magnets work thanks to the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of magnets creates attractive interactions, which affect objects made of cobalt or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Similar poles, e.g. two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are commonly used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them perfect for applications requiring powerful magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the material it is made of.
Not all materials react to magnets, and examples of such substances are plastic, glass items, wood or most gemstones. Moreover, magnets do not affect certain metals, such as copper, aluminum materials, copper, aluminum, and gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless exposed to a very strong magnetic field.
It should be noted that high temperatures can weaken the magnet's effect. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards or medical equipment, like pacemakers. Therefore, it is important to avoid placing magnets near such devices.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in many variants of shapes or sizes, which expands the range of their possible uses.
  • Wide application in modern technologies – are used in HDD drives, electric motors, medical apparatus or very advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Health risk arising from small pieces of magnets can be dangerous, if swallowed, which is particularly important in the aspect of protecting young children. It's also worth noting that miniscule components of these magnets can be problematic in medical diagnosis after entering the body.

Safety Precautions

Neodymium magnetic are highly fragile, they easily crack as well as can crumble.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

 It is important to maintain neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If the joining of neodymium magnets is not controlled, at that time they may crumble and crack. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.

Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Be careful!

To show why neodymium magnets are so dangerous, see the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98