tel: +48 888 99 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are available for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnet for searching F400 GOLD

Where to buy powerful magnet? Magnetic holders in airtight and durable steel casing are ideally suited for use in difficult, demanding climate conditions, including in the rain and snow see...

magnetic holders

Holders with magnets can be applied to enhance production processes, exploring underwater areas, or finding space rocks from gold check...

Shipping always shipped on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

SM 25x325 [2xM8] / N42 - magnetic roller

magnetic separator

catalog number 130349

GTIN: 5906301812975

no reviews

diameter Ø

25 mm [±0,1 mm]

height

325 mm [±0,1 mm]

max. temperature

≤ 80 °C

910.20 PLN gross price (including VAT) / pcs +

740.00 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
740.00 PLN
910.20 PLN
price from 3 pcs
703.00 PLN
864.69 PLN
price from 6 pcs
666.00 PLN
819.18 PLN

Do you have a problem in choosing?

Give us a call tel: +48 22 499 98 98 or contact us via form on our website. You can check the strength as well as the shape of neodymium magnet in our power calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: magnetic separator 25x325 [2xM8] / N42

Characteristics: magnetic separator 25x325 [2xM8] / N42
Properties
Values
catalog number
130349
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
25 mm [±0,1 mm]
height
325 mm [±0,1 mm]
max. temperature ?
≤ 80 °C
weight
0.01 g
execution tolerance
± 0.1 mm
rodzaj materiału
AISI 304 - bezpieczna dla żywności
rodzaj magnesów
NdFeB N42
ilość gwintów
2x [M8] wewnętrzne
biegunowość
obwodowa - 12 nabiegunników
indukcja magnetyczna
~ 6 500 Gauss [±5%]
max. temp. pracy
poniżej ≤ 80°C
grubość rury osłonowej
1 mm

Magnetic properties of the material N42

material characteristics N42
Properties
Values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
40-42
BH max MGOe
energy density [Min. - Max.]
318-334
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are welded in a construction made of stainless steel mostly AISI304. In this way, it is possible to precisely separate ferromagnetic particles from different substances. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be targeted. The thickness of the magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic particles. If the cans are ferromagnetic, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers find application in food production to clear metallic contaminants, such as iron fragments or iron dust. Our rods are made from acid-resistant steel, AISI 304, approved for use in food.
Magnetic rollers, otherwise cylindrical magnets, find application in metal separation, food production as well as recycling. They help in removing iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers consist of a neodymium magnet embedded in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded openings, enabling easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 and N52.
Generally it is believed that the stronger the magnet, the more effective. However, the strength of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is thin, the magnetic force lines will be short. On the other hand, in the case of a thicker magnet, the force lines will be longer and reach further.
For making the casings of magnetic separators - rollers, frequently stainless steel is used, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, type AISI 316 steel exhibits the best resistance thanks to its excellent anti-corrosion properties.
Magnetic rollers are characterized by their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other separators that often use more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
For proper maintenance of neodymium magnetic rollers, it is recommended {to clean them regularly from contaminants, avoid extreme temperatures above 80 degrees, and to clean them regularly, avoiding temperatures up to 80°C. The rollers our rollers have an IP67 waterproof rating, so if they are not watertight, the magnets inside may rust and lose their strength. Roller inspections are advised to be conducted once every 24 months. Care should be taken as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it can be worn down, which, in turn, may lead to issues with the magnetic rod becoming unsealed and product contamination. The Roller operating range equals its diameter, fi25mm is approximately 25mm active range, while fi32 is about 40mm.

Choose recommended products

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are extremely resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in many variants of shapes and sizes, which amplifies their universality in usage.
  • Wide application in advanced technologically fields – find application in hard drives, electric drive mechanisms, medical equipment and other modern machines.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • High temperatures can reduce the power of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent reduction in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard to health from tiny fragments of magnets can be dangerous, when accidentally ingested, which is particularly important in the context of children's health. It's also worth noting that small elements of these magnets are able to hinder the diagnostic process when they are in the body.

Handle Neodymium Magnets Carefully

Magnets made of neodymium are noted for their fragility, which can cause them to become damaged.

Neodymium magnetic are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will crack or crumble with careless connecting to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98