SM 25x325 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130349
GTIN: 5906301812975
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
325 mm
Weight
0.01 g
910.20 ZŁ with VAT / pcs + price for transport
740.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure what to buy?
Call us now
+48 888 99 98 98
otherwise let us know via
form
the contact page.
Specifications along with structure of a magnet can be verified using our
force calculator.
Order by 14:00 and we’ll ship today!
SM 25x325 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their consistent holding force, neodymium magnets have these key benefits:
- They have unchanged lifting capacity, and over nearly ten years their attraction force decreases symbolically – ~1% (in testing),
- They remain magnetized despite exposure to strong external fields,
- The use of a mirror-like gold surface provides a smooth finish,
- The outer field strength of the magnet shows elevated magnetic properties,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
- With the option for tailored forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
- Key role in advanced technical fields – they serve a purpose in data storage devices, electric motors, healthcare devices or even sophisticated instruments,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They can break when subjected to a sudden impact. If the magnets are exposed to physical collisions, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and additionally strengthens its overall durability,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a moist environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
- Possible threat from tiny pieces may arise, especially if swallowed, which is important in the protection of children. It should also be noted that miniature parts from these devices have the potential to interfere with diagnostics when ingested,
- In cases of tight budgets, neodymium magnet cost may be a barrier,
Maximum lifting force for a neodymium magnet – what contributes to it?
The given lifting capacity of the magnet means the maximum lifting force, calculated under optimal conditions, that is:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Impact of factors on magnetic holding capacity in practice
Practical lifting force is dependent on elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under parallel forces the holding force is lower. In addition, even a slight gap {between} the magnet and the plate lowers the holding force.
Exercise Caution with Neodymium Magnets
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Never bring neodymium magnets close to a phone and GPS.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets will crack or crumble with uncontrolled joining to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them very strongly.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets made of neodymium are noted for their fragility, which can cause them to shatter.
Neodymium magnets are characterized by considerable fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Neodymium magnets are the most powerful magnets ever invented. Their power can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Keep neodymium magnets away from children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Exercise caution!
In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.
