e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our store's offer. All "magnets" on our website are in stock for immediate purchase (check the list). See the magnet pricing for more details check the magnet price list

Magnet for fishing F200 GOLD

Where to purchase powerful magnet? Holders with magnets in airtight and durable steel casing are perfect for use in difficult weather, including snow and rain more information...

magnetic holders

Magnetic holders can be used to enhance manufacturing, exploring underwater areas, or searching for meteorites made of metal see...

Enjoy shipping of your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 40x22x10 / N38 - ring magnet

ring magnet

Catalog no 030344

GTIN: 5906301812296

5

Diameter [±0,1 mm]

40 mm

internal diameter Ø [±0,1 mm]

22 mm

Height [±0,1 mm]

10 mm

Weight

42.41 g

Magnetization Direction

↑ axial

Load capacity

12.54 kg / 122.98 N

Magnetic Induction

139.63 mT

Coating

[NiCuNi] nickel

40.59 with VAT / pcs + price for transport

33.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
33.00 ZŁ
40.59 ZŁ
price from 20 pcs
31.02 ZŁ
38.15 ZŁ
price from 80 pcs
29.04 ZŁ
35.72 ZŁ

Looking for a better price?

Pick up the phone and ask +48 22 499 98 98 if you prefer send us a note using request form through our site.
Parameters along with shape of neodymium magnets can be tested on our magnetic calculator.

Same-day processing for orders placed before 14:00.

MP 40x22x10 / N38 - ring magnet

Specification/characteristics MP 40x22x10 / N38 - ring magnet
properties
values
Cat. no.
030344
GTIN
5906301812296
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
40 mm [±0,1 mm]
internal diameter Ø
22 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
42.41 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
12.54 kg / 122.98 N
Magnetic Induction ~ ?
139.63 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium magnets MP 40x22x10 / N38 in a ring-shaped form are frequently used in various industries due to their specific properties. Thanks to a powerful magnetic field of 12.54 kg, which can be described as force, they are key in applications that require strong magnetism in a relatively small area. Usage of MP 40x22x10 / N38 magnets include electric motors, generators, sound devices, and several other devices that use magnets for producing motion or storing energy. Despite their powerful strength, they have a relatively low weight of 42.41 grams, which makes them more convenient to use compared to bulkier alternatives.
The operation of ring magnets results from their unique atomic structure. Their properties arise from a controlled production process, including sintering and magnetization, which allows for the creation of a concentrated magnetic field in a specific direction. This field is ideal for applications in systems requiring motion control. Moreover, ring magnets are resistant to demagnetization.
They are used in various fields of technology and industry, such as production of electronic devices, such as speakers and electric motors, automotive, where they are used in brushless electric motors, and medicine, where they are used in precision diagnostic devices. Thanks to their temperature resistance and precision makes them indispensable in challenging industrial conditions.
Ring magnets stand out high magnetic strength, resistance to high temperatures, and precision in generating the magnetic field. Their unique ring form allows for effective use in devices such as motors or speakers. Additionally, these magnets are more durable than traditional ferrite magnets, making them an ideal choice in the automotive, electronics, and medical industries.
Ring magnets perform excellently across a wide range of temperatures. Their magnetic properties remain stable, as long as the temperature does not exceed the Curie point. Compared to other types of magnets, ring magnets show greater resistance to demagnetization. For this reason, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A neodymium ring magnet of class N52 and N50 is a powerful and strong metal object in the form of a ring, providing high force and broad usability. Good price, availability, stability and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They have constant strength, and over around ten years their performance decreases symbolically – ~1% (according to theory),
  • They show strong resistance to demagnetization from external field exposure,
  • In other words, due to the glossy silver coating, the magnet obtains an stylish appearance,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which broadens their application range,
  • Significant impact in modern technologies – they are utilized in hard drives, rotating machines, clinical machines as well as high-tech tools,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and reinforces its overall robustness,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we advise waterproof types made of coated materials,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
  • Health risk related to magnet particles may arise, especially if swallowed, which is significant in the health of young users. Furthermore, minuscule fragments from these magnets have the potential to hinder health screening if inside the body,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Maximum lifting capacity of the magnetwhat it depends on?

The given strength of the magnet corresponds to the optimal strength, assessed under optimal conditions, that is:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • in a perpendicular direction of force
  • at room temperature

Determinants of lifting force in real conditions

In practice, the holding capacity of a magnet is conditioned by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the load capacity is reduced by as much as 75%. In addition, even a small distance {between} the magnet and the plate decreases the holding force.

Precautions

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will crack or alternatively crumble with careless joining to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are particularly delicate, which leads to shattering.

Neodymium magnetic are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Exercise caution!

So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98