MP 40x22x10 / N38 - ring magnet
ring magnet
Catalog no 030344
GTIN/EAN: 5906301812296
Diameter
40 mm [±0,1 mm]
internal diameter Ø
22 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
65.74 g
Magnetization Direction
↑ axial
Load capacity
19.34 kg / 189.71 N
Magnetic Induction
277.22 mT / 2772 Gs
Coating
[NiCuNi] Nickel
40.59 ZŁ with VAT / pcs + price for transport
33.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 888 99 98 98
or contact us using
inquiry form
the contact section.
Specifications along with form of neodymium magnets can be verified with our
our magnetic calculator.
Order by 14:00 and we’ll ship today!
Technical of the product - MP 40x22x10 / N38 - ring magnet
Specification / characteristics - MP 40x22x10 / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030344 |
| GTIN/EAN | 5906301812296 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 40 mm [±0,1 mm] |
| internal diameter Ø | 22 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 65.74 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 19.34 kg / 189.71 N |
| Magnetic Induction ~ ? | 277.22 mT / 2772 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the assembly - data
These information are the direct effect of a mathematical calculation. Values rely on models for the material Nd2Fe14B. Actual performance may deviate from the simulation results. Use these data as a preliminary roadmap when designing systems.
Table 1: Static pull force (force vs gap) - interaction chart
MP 40x22x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5269 Gs
526.9 mT
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
dangerous! |
| 1 mm |
5005 Gs
500.5 mT
|
17.46 kg / 38.48 lbs
17455.9 g / 171.2 N
|
dangerous! |
| 2 mm |
4739 Gs
473.9 mT
|
15.65 kg / 34.50 lbs
15647.5 g / 153.5 N
|
dangerous! |
| 3 mm |
4475 Gs
447.5 mT
|
13.95 kg / 30.75 lbs
13950.0 g / 136.8 N
|
dangerous! |
| 5 mm |
3960 Gs
396.0 mT
|
10.93 kg / 24.09 lbs
10927.7 g / 107.2 N
|
dangerous! |
| 10 mm |
2832 Gs
283.2 mT
|
5.59 kg / 12.32 lbs
5589.2 g / 54.8 N
|
medium risk |
| 15 mm |
1990 Gs
199.0 mT
|
2.76 kg / 6.09 lbs
2760.5 g / 27.1 N
|
medium risk |
| 20 mm |
1407 Gs
140.7 mT
|
1.38 kg / 3.04 lbs
1379.2 g / 13.5 N
|
weak grip |
| 30 mm |
745 Gs
74.5 mT
|
0.39 kg / 0.85 lbs
386.2 g / 3.8 N
|
weak grip |
| 50 mm |
268 Gs
26.8 mT
|
0.05 kg / 0.11 lbs
50.1 g / 0.5 N
|
weak grip |
Table 2: Sliding load (wall)
MP 40x22x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.87 kg / 8.53 lbs
3868.0 g / 37.9 N
|
| 1 mm | Stal (~0.2) |
3.49 kg / 7.70 lbs
3492.0 g / 34.3 N
|
| 2 mm | Stal (~0.2) |
3.13 kg / 6.90 lbs
3130.0 g / 30.7 N
|
| 3 mm | Stal (~0.2) |
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
| 5 mm | Stal (~0.2) |
2.19 kg / 4.82 lbs
2186.0 g / 21.4 N
|
| 10 mm | Stal (~0.2) |
1.12 kg / 2.46 lbs
1118.0 g / 11.0 N
|
| 15 mm | Stal (~0.2) |
0.55 kg / 1.22 lbs
552.0 g / 5.4 N
|
| 20 mm | Stal (~0.2) |
0.28 kg / 0.61 lbs
276.0 g / 2.7 N
|
| 30 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MP 40x22x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
5.80 kg / 12.79 lbs
5802.0 g / 56.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.87 kg / 8.53 lbs
3868.0 g / 37.9 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
1.93 kg / 4.26 lbs
1934.0 g / 19.0 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
9.67 kg / 21.32 lbs
9670.0 g / 94.9 N
|
Table 4: Material efficiency (saturation) - power losses
MP 40x22x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.97 kg / 2.13 lbs
967.0 g / 9.5 N
|
| 1 mm |
|
2.42 kg / 5.33 lbs
2417.5 g / 23.7 N
|
| 2 mm |
|
4.84 kg / 10.66 lbs
4835.0 g / 47.4 N
|
| 3 mm |
|
7.25 kg / 15.99 lbs
7252.5 g / 71.1 N
|
| 5 mm |
|
12.09 kg / 26.65 lbs
12087.5 g / 118.6 N
|
| 10 mm |
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
| 11 mm |
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
| 12 mm |
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
Table 5: Working in heat (material behavior) - thermal limit
MP 40x22x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
OK |
| 40 °C | -2.2% |
18.91 kg / 41.70 lbs
18914.5 g / 185.6 N
|
OK |
| 60 °C | -4.4% |
18.49 kg / 40.76 lbs
18489.0 g / 181.4 N
|
OK |
| 80 °C | -6.6% |
18.06 kg / 39.82 lbs
18063.6 g / 177.2 N
|
|
| 100 °C | -28.8% |
13.77 kg / 30.36 lbs
13770.1 g / 135.1 N
|
Table 6: Two magnets (repulsion) - field collision
MP 40x22x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
171.37 kg / 377.80 lbs
5 920 Gs
|
25.71 kg / 56.67 lbs
25705 g / 252.2 N
|
N/A |
| 1 mm |
163.01 kg / 359.38 lbs
10 277 Gs
|
24.45 kg / 53.91 lbs
24452 g / 239.9 N
|
146.71 kg / 323.44 lbs
~0 Gs
|
| 2 mm |
154.67 kg / 341.00 lbs
10 011 Gs
|
23.20 kg / 51.15 lbs
23201 g / 227.6 N
|
139.21 kg / 306.90 lbs
~0 Gs
|
| 3 mm |
146.55 kg / 323.08 lbs
9 744 Gs
|
21.98 kg / 48.46 lbs
21982 g / 215.6 N
|
131.89 kg / 290.77 lbs
~0 Gs
|
| 5 mm |
131.00 kg / 288.81 lbs
9 213 Gs
|
19.65 kg / 43.32 lbs
19650 g / 192.8 N
|
117.90 kg / 259.92 lbs
~0 Gs
|
| 10 mm |
96.83 kg / 213.47 lbs
7 921 Gs
|
14.52 kg / 32.02 lbs
14524 g / 142.5 N
|
87.15 kg / 192.12 lbs
~0 Gs
|
| 20 mm |
49.53 kg / 109.18 lbs
5 665 Gs
|
7.43 kg / 16.38 lbs
7429 g / 72.9 N
|
44.57 kg / 98.27 lbs
~0 Gs
|
| 50 mm |
6.33 kg / 13.95 lbs
2 025 Gs
|
0.95 kg / 2.09 lbs
949 g / 9.3 N
|
5.69 kg / 12.55 lbs
~0 Gs
|
| 60 mm |
3.42 kg / 7.55 lbs
1 489 Gs
|
0.51 kg / 1.13 lbs
513 g / 5.0 N
|
3.08 kg / 6.79 lbs
~0 Gs
|
| 70 mm |
1.94 kg / 4.27 lbs
1 120 Gs
|
0.29 kg / 0.64 lbs
290 g / 2.8 N
|
1.74 kg / 3.84 lbs
~0 Gs
|
| 80 mm |
1.14 kg / 2.52 lbs
860 Gs
|
0.17 kg / 0.38 lbs
171 g / 1.7 N
|
1.03 kg / 2.27 lbs
~0 Gs
|
| 90 mm |
0.70 kg / 1.54 lbs
673 Gs
|
0.10 kg / 0.23 lbs
105 g / 1.0 N
|
0.63 kg / 1.39 lbs
~0 Gs
|
| 100 mm |
0.44 kg / 0.98 lbs
536 Gs
|
0.07 kg / 0.15 lbs
67 g / 0.7 N
|
0.40 kg / 0.88 lbs
~0 Gs
|
Table 7: Protective zones (electronics) - precautionary measures
MP 40x22x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 24.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 18.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 14.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 11.0 cm |
| Car key | 50 Gs (5.0 mT) | 10.5 cm |
| Payment card | 400 Gs (40.0 mT) | 4.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 3.5 cm |
Table 8: Dynamics (cracking risk) - warning
MP 40x22x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
20.18 km/h
(5.61 m/s)
|
1.03 J | |
| 30 mm |
30.33 km/h
(8.43 m/s)
|
2.33 J | |
| 50 mm |
38.74 km/h
(10.76 m/s)
|
3.81 J | |
| 100 mm |
54.70 km/h
(15.20 m/s)
|
7.59 J |
Table 9: Anti-corrosion coating durability
MP 40x22x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MP 40x22x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 54 070 Mx | 540.7 µWb |
| Pc Coefficient | 0.81 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MP 40x22x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 19.34 kg | Standard |
| Water (riverbed) |
22.14 kg
(+2.80 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Note: On a vertical wall, the magnet retains merely a fraction of its max power.
2. Efficiency vs thickness
*Thin metal sheet (e.g. computer case) significantly limits the holding force.
3. Power loss vs temp
*For N38 grade, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.81
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out also products
Strengths as well as weaknesses of Nd2Fe14B magnets.
Advantages
- They virtually do not lose power, because even after ten years the decline in efficiency is only ~1% (in laboratory conditions),
- Magnets very well defend themselves against demagnetization caused by ambient magnetic noise,
- The use of an shiny finish of noble metals (nickel, gold, silver) causes the element to present itself better,
- The surface of neodymium magnets generates a powerful magnetic field – this is a key feature,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
- Thanks to the option of flexible shaping and customization to individualized needs, neodymium magnets can be created in a broad palette of geometric configurations, which expands the range of possible applications,
- Fundamental importance in innovative solutions – they are utilized in mass storage devices, electric motors, medical devices, as well as modern systems.
- Thanks to their power density, small magnets offer high operating force, occupying minimum space,
Weaknesses
- To avoid cracks under impact, we suggest using special steel housings. Such a solution protects the magnet and simultaneously increases its durability.
- We warn that neodymium magnets can lose their power at high temperatures. To prevent this, we suggest our specialized [AH] magnets, which work effectively even at 230°C.
- Magnets exposed to a humid environment can corrode. Therefore when using outdoors, we advise using water-impermeable magnets made of rubber, plastic or other material protecting against moisture
- Limited ability of making nuts in the magnet and complex shapes - recommended is a housing - magnetic holder.
- Possible danger related to microscopic parts of magnets pose a threat, if swallowed, which is particularly important in the aspect of protecting the youngest. Furthermore, tiny parts of these products are able to be problematic in diagnostics medical when they are in the body.
- Due to complex production process, their price is relatively high,
Holding force characteristics
Maximum magnetic pulling force – what contributes to it?
- with the use of a yoke made of special test steel, guaranteeing maximum field concentration
- possessing a massiveness of minimum 10 mm to ensure full flux closure
- with a plane cleaned and smooth
- without the slightest clearance between the magnet and steel
- under vertical application of breakaway force (90-degree angle)
- in neutral thermal conditions
Practical lifting capacity: influencing factors
- Air gap (between the magnet and the metal), since even a very small distance (e.g. 0.5 mm) can cause a decrease in lifting capacity by up to 50% (this also applies to varnish, rust or dirt).
- Pull-off angle – remember that the magnet has greatest strength perpendicularly. Under shear forces, the holding force drops significantly, often to levels of 20-30% of the maximum value.
- Metal thickness – thin material does not allow full use of the magnet. Part of the magnetic field penetrates through instead of generating force.
- Plate material – low-carbon steel attracts best. Alloy admixtures lower magnetic permeability and lifting capacity.
- Plate texture – ground elements guarantee perfect abutment, which increases force. Rough surfaces weaken the grip.
- Operating temperature – NdFeB sinters have a negative temperature coefficient. When it is hot they are weaker, and at low temperatures they can be stronger (up to a certain limit).
Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under perpendicular forces, however under attempts to slide the magnet the holding force is lower. In addition, even a minimal clearance between the magnet and the plate decreases the load capacity.
Safety rules for work with neodymium magnets
Serious injuries
Watch your fingers. Two powerful magnets will join immediately with a force of several hundred kilograms, destroying anything in their path. Be careful!
Power loss in heat
Avoid heat. NdFeB magnets are sensitive to heat. If you require operation above 80°C, inquire about special high-temperature series (H, SH, UH).
Medical interference
Individuals with a heart stimulator have to keep an absolute distance from magnets. The magnetic field can interfere with the operation of the life-saving device.
Adults only
NdFeB magnets are not intended for children. Accidental ingestion of a few magnets can lead to them attracting across intestines, which poses a severe health hazard and requires urgent medical intervention.
Material brittleness
Despite metallic appearance, neodymium is brittle and not impact-resistant. Do not hit, as the magnet may shatter into hazardous fragments.
Nickel allergy
It is widely known that nickel (the usual finish) is a strong allergen. If you have an allergy, refrain from touching magnets with bare hands or select versions in plastic housing.
Fire warning
Fire hazard: Rare earth powder is highly flammable. Avoid machining magnets in home conditions as this risks ignition.
Caution required
Before use, read the rules. Sudden snapping can break the magnet or injure your hand. Be predictive.
Keep away from computers
Avoid bringing magnets close to a purse, laptop, or TV. The magnetic field can destroy these devices and erase data from cards.
Compass and GPS
An intense magnetic field negatively affects the functioning of compasses in smartphones and navigation systems. Maintain magnets close to a smartphone to prevent damaging the sensors.
