MP 40x22x10 / N38 - ring magnet
ring magnet
Catalog no 030344
GTIN/EAN: 5906301812296
Diameter
40 mm [±0,1 mm]
internal diameter Ø
22 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
65.74 g
Magnetization Direction
↑ axial
Load capacity
19.34 kg / 189.71 N
Magnetic Induction
277.22 mT / 2772 Gs
Coating
[NiCuNi] Nickel
40.59 ZŁ with VAT / pcs + price for transport
33.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 888 99 98 98
or send us a note via
contact form
the contact section.
Force along with structure of a magnet can be estimated on our
magnetic calculator.
Same-day processing for orders placed before 14:00.
Technical of the product - MP 40x22x10 / N38 - ring magnet
Specification / characteristics - MP 40x22x10 / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030344 |
| GTIN/EAN | 5906301812296 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 40 mm [±0,1 mm] |
| internal diameter Ø | 22 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 65.74 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 19.34 kg / 189.71 N |
| Magnetic Induction ~ ? | 277.22 mT / 2772 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical simulation of the product - report
Presented values represent the result of a mathematical calculation. Results are based on algorithms for the material Nd2Fe14B. Actual conditions may differ. Please consider these calculations as a reference point when designing systems.
Table 1: Static pull force (force vs distance) - power drop
MP 40x22x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5269 Gs
526.9 mT
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
dangerous! |
| 1 mm |
5005 Gs
500.5 mT
|
17.46 kg / 38.48 lbs
17455.9 g / 171.2 N
|
dangerous! |
| 2 mm |
4739 Gs
473.9 mT
|
15.65 kg / 34.50 lbs
15647.5 g / 153.5 N
|
dangerous! |
| 3 mm |
4475 Gs
447.5 mT
|
13.95 kg / 30.75 lbs
13950.0 g / 136.8 N
|
dangerous! |
| 5 mm |
3960 Gs
396.0 mT
|
10.93 kg / 24.09 lbs
10927.7 g / 107.2 N
|
dangerous! |
| 10 mm |
2832 Gs
283.2 mT
|
5.59 kg / 12.32 lbs
5589.2 g / 54.8 N
|
medium risk |
| 15 mm |
1990 Gs
199.0 mT
|
2.76 kg / 6.09 lbs
2760.5 g / 27.1 N
|
medium risk |
| 20 mm |
1407 Gs
140.7 mT
|
1.38 kg / 3.04 lbs
1379.2 g / 13.5 N
|
low risk |
| 30 mm |
745 Gs
74.5 mT
|
0.39 kg / 0.85 lbs
386.2 g / 3.8 N
|
low risk |
| 50 mm |
268 Gs
26.8 mT
|
0.05 kg / 0.11 lbs
50.1 g / 0.5 N
|
low risk |
Table 2: Slippage force (wall)
MP 40x22x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.87 kg / 8.53 lbs
3868.0 g / 37.9 N
|
| 1 mm | Stal (~0.2) |
3.49 kg / 7.70 lbs
3492.0 g / 34.3 N
|
| 2 mm | Stal (~0.2) |
3.13 kg / 6.90 lbs
3130.0 g / 30.7 N
|
| 3 mm | Stal (~0.2) |
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
| 5 mm | Stal (~0.2) |
2.19 kg / 4.82 lbs
2186.0 g / 21.4 N
|
| 10 mm | Stal (~0.2) |
1.12 kg / 2.46 lbs
1118.0 g / 11.0 N
|
| 15 mm | Stal (~0.2) |
0.55 kg / 1.22 lbs
552.0 g / 5.4 N
|
| 20 mm | Stal (~0.2) |
0.28 kg / 0.61 lbs
276.0 g / 2.7 N
|
| 30 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MP 40x22x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
5.80 kg / 12.79 lbs
5802.0 g / 56.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.87 kg / 8.53 lbs
3868.0 g / 37.9 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
1.93 kg / 4.26 lbs
1934.0 g / 19.0 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
9.67 kg / 21.32 lbs
9670.0 g / 94.9 N
|
Table 4: Material efficiency (substrate influence) - power losses
MP 40x22x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.97 kg / 2.13 lbs
967.0 g / 9.5 N
|
| 1 mm |
|
2.42 kg / 5.33 lbs
2417.5 g / 23.7 N
|
| 2 mm |
|
4.84 kg / 10.66 lbs
4835.0 g / 47.4 N
|
| 3 mm |
|
7.25 kg / 15.99 lbs
7252.5 g / 71.1 N
|
| 5 mm |
|
12.09 kg / 26.65 lbs
12087.5 g / 118.6 N
|
| 10 mm |
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
| 11 mm |
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
| 12 mm |
|
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
Table 5: Thermal stability (material behavior) - power drop
MP 40x22x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.34 kg / 42.64 lbs
19340.0 g / 189.7 N
|
OK |
| 40 °C | -2.2% |
18.91 kg / 41.70 lbs
18914.5 g / 185.6 N
|
OK |
| 60 °C | -4.4% |
18.49 kg / 40.76 lbs
18489.0 g / 181.4 N
|
OK |
| 80 °C | -6.6% |
18.06 kg / 39.82 lbs
18063.6 g / 177.2 N
|
|
| 100 °C | -28.8% |
13.77 kg / 30.36 lbs
13770.1 g / 135.1 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MP 40x22x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
171.37 kg / 377.80 lbs
5 920 Gs
|
25.71 kg / 56.67 lbs
25705 g / 252.2 N
|
N/A |
| 1 mm |
163.01 kg / 359.38 lbs
10 277 Gs
|
24.45 kg / 53.91 lbs
24452 g / 239.9 N
|
146.71 kg / 323.44 lbs
~0 Gs
|
| 2 mm |
154.67 kg / 341.00 lbs
10 011 Gs
|
23.20 kg / 51.15 lbs
23201 g / 227.6 N
|
139.21 kg / 306.90 lbs
~0 Gs
|
| 3 mm |
146.55 kg / 323.08 lbs
9 744 Gs
|
21.98 kg / 48.46 lbs
21982 g / 215.6 N
|
131.89 kg / 290.77 lbs
~0 Gs
|
| 5 mm |
131.00 kg / 288.81 lbs
9 213 Gs
|
19.65 kg / 43.32 lbs
19650 g / 192.8 N
|
117.90 kg / 259.92 lbs
~0 Gs
|
| 10 mm |
96.83 kg / 213.47 lbs
7 921 Gs
|
14.52 kg / 32.02 lbs
14524 g / 142.5 N
|
87.15 kg / 192.12 lbs
~0 Gs
|
| 20 mm |
49.53 kg / 109.18 lbs
5 665 Gs
|
7.43 kg / 16.38 lbs
7429 g / 72.9 N
|
44.57 kg / 98.27 lbs
~0 Gs
|
| 50 mm |
6.33 kg / 13.95 lbs
2 025 Gs
|
0.95 kg / 2.09 lbs
949 g / 9.3 N
|
5.69 kg / 12.55 lbs
~0 Gs
|
| 60 mm |
3.42 kg / 7.55 lbs
1 489 Gs
|
0.51 kg / 1.13 lbs
513 g / 5.0 N
|
3.08 kg / 6.79 lbs
~0 Gs
|
| 70 mm |
1.94 kg / 4.27 lbs
1 120 Gs
|
0.29 kg / 0.64 lbs
290 g / 2.8 N
|
1.74 kg / 3.84 lbs
~0 Gs
|
| 80 mm |
1.14 kg / 2.52 lbs
860 Gs
|
0.17 kg / 0.38 lbs
171 g / 1.7 N
|
1.03 kg / 2.27 lbs
~0 Gs
|
| 90 mm |
0.70 kg / 1.54 lbs
673 Gs
|
0.10 kg / 0.23 lbs
105 g / 1.0 N
|
0.63 kg / 1.39 lbs
~0 Gs
|
| 100 mm |
0.44 kg / 0.98 lbs
536 Gs
|
0.07 kg / 0.15 lbs
67 g / 0.7 N
|
0.40 kg / 0.88 lbs
~0 Gs
|
Table 7: Protective zones (implants) - precautionary measures
MP 40x22x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 24.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 18.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 14.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 11.0 cm |
| Car key | 50 Gs (5.0 mT) | 10.5 cm |
| Payment card | 400 Gs (40.0 mT) | 4.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 3.5 cm |
Table 8: Dynamics (kinetic energy) - collision effects
MP 40x22x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
20.18 km/h
(5.61 m/s)
|
1.03 J | |
| 30 mm |
30.33 km/h
(8.43 m/s)
|
2.33 J | |
| 50 mm |
38.74 km/h
(10.76 m/s)
|
3.81 J | |
| 100 mm |
54.70 km/h
(15.20 m/s)
|
7.59 J |
Table 9: Coating parameters (durability)
MP 40x22x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MP 40x22x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 54 070 Mx | 540.7 µWb |
| Pc Coefficient | 0.81 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MP 40x22x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 19.34 kg | Standard |
| Water (riverbed) |
22.14 kg
(+2.80 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Warning: On a vertical wall, the magnet retains merely ~20% of its nominal pull.
2. Steel thickness impact
*Thin metal sheet (e.g. 0.5mm PC case) significantly limits the holding force.
3. Temperature resistance
*For N38 grade, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.81
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other proposals
Advantages as well as disadvantages of Nd2Fe14B magnets.
Advantages
- They retain attractive force for almost ten years – the loss is just ~1% (in theory),
- Neodymium magnets are characterized by remarkably resistant to demagnetization caused by external interference,
- By covering with a reflective layer of silver, the element gains an nice look,
- They feature high magnetic induction at the operating surface, which improves attraction properties,
- Thanks to resistance to high temperature, they are capable of working (depending on the shape) even at temperatures up to 230°C and higher...
- Possibility of accurate shaping as well as adjusting to complex conditions,
- Wide application in modern industrial fields – they find application in mass storage devices, electromotive mechanisms, precision medical tools, also other advanced devices.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Disadvantages
- At strong impacts they can break, therefore we recommend placing them in special holders. A metal housing provides additional protection against damage and increases the magnet's durability.
- Neodymium magnets lose their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- Magnets exposed to a humid environment can rust. Therefore when using outdoors, we recommend using waterproof magnets made of rubber, plastic or other material protecting against moisture
- Limited ability of creating nuts in the magnet and complex shapes - recommended is casing - magnet mounting.
- Potential hazard related to microscopic parts of magnets are risky, if swallowed, which gains importance in the aspect of protecting the youngest. Additionally, tiny parts of these products can be problematic in diagnostics medical after entering the body.
- Higher cost of purchase is a significant factor to consider compared to ceramic magnets, especially in budget applications
Pull force analysis
Breakaway strength of the magnet in ideal conditions – what affects it?
- using a sheet made of low-carbon steel, functioning as a circuit closing element
- with a cross-section of at least 10 mm
- with a plane cleaned and smooth
- without any clearance between the magnet and steel
- during pulling in a direction vertical to the mounting surface
- in temp. approx. 20°C
Practical lifting capacity: influencing factors
- Clearance – existence of foreign body (rust, tape, gap) interrupts the magnetic circuit, which lowers power rapidly (even by 50% at 0.5 mm).
- Pull-off angle – remember that the magnet has greatest strength perpendicularly. Under sliding down, the holding force drops drastically, often to levels of 20-30% of the maximum value.
- Wall thickness – the thinner the sheet, the weaker the hold. Part of the magnetic field passes through the material instead of generating force.
- Metal type – not every steel reacts the same. High carbon content weaken the attraction effect.
- Plate texture – smooth surfaces guarantee perfect abutment, which improves force. Rough surfaces reduce efficiency.
- Thermal factor – high temperature reduces pulling force. Exceeding the limit temperature can permanently damage the magnet.
Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under attempts to slide the magnet the lifting capacity is smaller. In addition, even a slight gap between the magnet’s surface and the plate lowers the load capacity.
Safety rules for work with neodymium magnets
Crushing force
Danger of trauma: The attraction force is so great that it can result in hematomas, crushing, and broken bones. Protective gloves are recommended.
GPS and phone interference
A strong magnetic field interferes with the operation of compasses in phones and GPS navigation. Keep magnets close to a smartphone to avoid breaking the sensors.
Combustion hazard
Fire warning: Neodymium dust is highly flammable. Do not process magnets without safety gear as this may cause fire.
Metal Allergy
Warning for allergy sufferers: The nickel-copper-nickel coating contains nickel. If an allergic reaction occurs, immediately stop handling magnets and wear gloves.
Choking Hazard
Only for adults. Tiny parts can be swallowed, causing severe trauma. Store away from kids and pets.
Permanent damage
Watch the temperature. Heating the magnet to high heat will destroy its magnetic structure and strength.
Conscious usage
Be careful. Rare earth magnets act from a distance and connect with massive power, often faster than you can move away.
Medical interference
Warning for patients: Strong magnetic fields disrupt electronics. Keep minimum 30 cm distance or ask another person to handle the magnets.
Material brittleness
Beware of splinters. Magnets can fracture upon violent connection, launching shards into the air. Eye protection is mandatory.
Protect data
Very strong magnetic fields can corrupt files on credit cards, hard drives, and other magnetic media. Stay away of at least 10 cm.
