e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnetic Nd2Fe14B - our offer. Practically all magnesy neodymowe on our website are available for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnets for water searching F300 GOLD

Where to purchase very strong magnet? Magnet holders in solid and airtight enclosure are perfect for use in difficult, demanding weather, including during snow and rain read...

magnetic holders

Holders with magnets can be applied to facilitate manufacturing, exploring underwater areas, or searching for meteors made of metal read...

Enjoy delivery of your order if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available Ships today (order by 14:00)

SM 19x225 [2xM6] / N50 - magnetic separator

magnetic separator

Catalog no 130241

GTIN: 5906301812708

5

Diameter Ø [±0,1 mm]

19 mm

Height [±0,1 mm]

225 mm

Weight

0.01 g

492.00 with VAT / pcs + price for transport

400.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
400.00 ZŁ
492.00 ZŁ
price from 10 pcs
380.00 ZŁ
467.40 ZŁ
price from 15 pcs
360.00 ZŁ
442.80 ZŁ

Do you have a dilemma?

Call us +48 888 99 98 98 alternatively contact us through request form the contact page.
Strength along with shape of a neodymium magnet can be analyzed on our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

SM 19x225 [2xM6] / N50 - magnetic separator

Specification/characteristics SM 19x225 [2xM6] / N50 - magnetic separator
properties
values
Cat. no.
130241
GTIN
5906301812708
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
19 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N50

properties
values
units
remenance Br [Min. - Max.] ?
14-14.6
kGs
remenance Br [Min. - Max.] ?
1400-1460
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
47-51
BH max MGOe
energy density [Min. - Max.] ?
374-406
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This product serves to catch ferromagnetic impurities from raw materials. It is installed in chutes and hoppers to protect production machinery. High magnetic induction allows catching the finest iron particles.
The construction is based on a sealed stainless steel housing. The core is a magnetic circuit generating high induction. Such construction ensures resistance to corrosion, water, and acids.
Due to high power, direct removal of filings can be troublesome. You can use compressed air or special non-magnetic strippers. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
Magnetic induction measured in Gauss (Gs) determines the magnetic flux density on the rod surface. The economical version handles large metal pieces well. For the food and precision industry, we recommend the highest parameters.
Yes, as a manufacturer, we make rods of any length and diameter (standard is 25mm and 32mm). We offer various tip options: threaded holes (e.g., M8, M10), protruding screws, flat studs, or handles. We ensure fast execution of special orders.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their remarkable field intensity, neodymium magnets offer the following advantages:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (according to literature),
  • They are very resistant to demagnetization caused by external field interference,
  • Because of the brilliant layer of nickel, the component looks visually appealing,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which expands their functional possibilities,
  • Important function in modern technologies – they are utilized in computer drives, electromechanical systems, healthcare devices as well as sophisticated instruments,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and additionally strengthens its overall resistance,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of rubber for outdoor use,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Health risk linked to microscopic shards may arise, if ingested accidentally, which is significant in the family environments. It should also be noted that small elements from these products might disrupt scanning when ingested,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Maximum holding power of the magnet – what it depends on?

The given strength of the magnet represents the optimal strength, assessed in ideal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with zero air gap
  • with vertical force applied
  • at room temperature

Determinants of lifting force in real conditions

The lifting capacity of a magnet is determined by in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under shearing force the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.

Handle Neodymium Magnets Carefully

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

  Neodymium magnets should not be around youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Magnets made of neodymium are extremely fragile, leading to shattering.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If the joining of neodymium magnets is not under control, then they may crumble and crack. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Safety precautions!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98