tel: +48 22 499 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are in stock for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to purchase strong magnet? Magnetic holders in solid and airtight steel enclosure are ideally suited for use in challenging weather, including in the rain and snow see more...

magnets with holders

Magnetic holders can be applied to facilitate production processes, exploring underwater areas, or locating meteorites from gold check...

Enjoy delivery of your order if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 19x225 [2xM6] / N50 - magnetic separator

magnetic separator

Catalog no 130241

GTIN: 5906301812708

5

Diameter Ø [±0,1 mm]

19 mm

Height [±0,1 mm]

225 mm

Weight

0.01 g

492.00 with VAT / pcs + price for transport

400.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
400.00 ZŁ
492.00 ZŁ
price from 6 pcs
380.00 ZŁ
467.40 ZŁ
price from 11 pcs
360.00 ZŁ
442.80 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

SM 19x225 [2xM6] / N50 - magnetic separator

Specification/characteristics SM 19x225 [2xM6] / N50 - magnetic separator
properties
values
Cat. no.
130241
GTIN
5906301812708
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
19 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N50

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
374-406
BH max KJ/m
energy density [Min. - Max.] ?
47-51
BH max MGOe
remenance Br [Min. - Max.] ?
14-14.6
kGs
remenance Br [Min. - Max.] ?
1400-1460
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are placed in a construction made of stainless steel usually AISI304. As a result, it is possible to efficiently separate ferromagnetic particles from the mixture. A fundamental component of its operation is the use of repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be targeted. The thickness of the magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic elements. If the cans are ferromagnetic, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are employed in the food industry for the elimination of metallic contaminants, such as iron fragments or iron dust. Our rollers are made from durable acid-resistant steel, EN 1.4301, suitable for use in food.
Magnetic rollers, often called cylindrical magnets, are employed in food production, metal separation as well as waste processing. They help in eliminating iron dust during the process of separating metals from other materials.
Our magnetic rollers are built with neodymium magnets placed in a tube made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 as well as N52.
Often it is believed that the stronger the magnet, the better. But, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is more flat, the magnetic force lines will be short. On the other hand, in the case of a thicker magnet, the force lines are longer and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, most often stainless steel is utilized, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, AISI 316 steel exhibits the best resistance due to its excellent anti-corrosion properties.
Magnetic rollers are characterized by their specific arrangement of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other separators that often use more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. Disadvantages may include higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, you should they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and lose their power. Testing of the rollers is recommended be carried out once every 24 months. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Key role in modern technologies – find application in computer drives, electric drive mechanisms, medical apparatus or very highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard arising from small pieces of magnets can be dangerous, in case of ingestion, which is crucial in the context of child safety. Additionally, miniscule components of these magnets have the potential to complicate diagnosis when they are in the body.

Handle with Care: Neodymium Magnets

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are particularly delicate, resulting in damage.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

  Magnets are not toys, youngest should not play with them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Safety rules!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98