tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our store's offer. Practically all "magnets" in our store are in stock for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in airtight and durable enclosure are excellent for use in challenging weather conditions, including during rain and snow more information...

magnetic holders

Holders with magnets can be used to improve production processes, exploring underwater areas, or finding meteors made of ore check...

Shipping is shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 19x225 [2xM6] / N50 - magnetic separator

magnetic separator

Catalog no 130241

GTIN: 5906301812708

5

Diameter Ø [±0,1 mm]

19 mm

Height [±0,1 mm]

225 mm

Weight

0.01 g

492.00 with VAT / pcs + price for transport

400.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
400.00 ZŁ
492.00 ZŁ
price from 10 pcs
380.00 ZŁ
467.40 ZŁ
price from 15 pcs
360.00 ZŁ
442.80 ZŁ

Not sure about your choice?

Pick up the phone and ask +48 22 499 98 98 alternatively let us know using request form the contact page.
Force and form of magnetic components can be reviewed using our force calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 19x225 [2xM6] / N50 - magnetic separator

Specification/characteristics SM 19x225 [2xM6] / N50 - magnetic separator
properties
values
Cat. no.
130241
GTIN
5906301812708
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
19 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N50

properties
values
units
remenance Br [Min. - Max.] ?
14-14.6
kGs
remenance Br [Min. - Max.] ?
1400-1460
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
47-51
BH max MGOe
energy density [Min. - Max.] ?
374-406
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are welded in a construction made of stainless steel mostly AISI304. Due to this, it is possible to efficiently separate ferromagnetic particles from different substances. A fundamental component of its operation is the repulsion of magnetic poles N and S, which allows magnetic substances to be attracted. The thickness of the embedded magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators serve to segregate ferromagnetic particles. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in the food sector for the elimination of metallic contaminants, such as iron fragments or iron dust. Our rollers are made from durable acid-resistant steel, EN 1.4301, intended for contact with food.
Magnetic rollers, often called magnetic separators, are employed in food production, metal separation as well as recycling. They help in removing iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are built with neodymium magnets placed in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, which enables quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Generally it is believed that the greater the magnet's power, the more effective. However, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines will be more compressed. Otherwise, in the case of a thicker magnet, the force lines are longer and extend over a greater distance.
For making the casings of magnetic separators - rollers, usually stainless steel is employed, particularly types AISI 316, AISI 316L, and AISI 304.
In a saltwater environment, AISI 316 steel is recommended due to its exceptional anti-corrosion properties.
Magnetic bars are characterized by their specific arrangement of poles and their capability to attract magnetic substances directly onto their surface, as opposed to other separators that often use complex filtration systems.
Technical designations and terms related to magnetic separators include among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
For proper maintenance of neodymium magnetic rollers, it is recommended regularly cleaning them from deposits, avoiding extreme temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Testing of the rollers should be carried out every two years. Caution should be taken during use, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous strength, neodymium magnets offer the following advantages:

  • They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
  • They show superior resistance to demagnetization from outside magnetic sources,
  • The use of a decorative silver surface provides a eye-catching finish,
  • Magnetic induction on the surface of these magnets is very strong,
  • With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
  • The ability for accurate shaping as well as customization to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Key role in cutting-edge sectors – they serve a purpose in hard drives, rotating machines, medical equipment as well as other advanced devices,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and additionally reinforces its overall resistance,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a damp environment, especially when used outside, we recommend using waterproof magnets, such as those made of plastic,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is significant in the family environments. Additionally, small elements from these magnets may interfere with diagnostics after being swallowed,
  • Due to the price of neodymium, their cost is above average,

Optimal lifting capacity of a neodymium magnetwhat contributes to it?

The given strength of the magnet corresponds to the optimal strength, assessed in the best circumstances, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • in a perpendicular direction of force
  • at room temperature

Determinants of lifting force in real conditions

In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on a smooth plate of optimal thickness, under a perpendicular pulling force, whereas under shearing force the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet’s surface and the plate decreases the holding force.

Precautions with Neodymium Magnets

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

  Do not give neodymium magnets to youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, can even cut off a finger or alternatively there can be a serious pressure or even a fracture.

Neodymium magnets are highly susceptible to damage, resulting in breaking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Caution!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98