SM 19x225 [2xM6] / N50 - magnetic separator
magnetic separator
Catalog no 130241
GTIN: 5906301812708
Diameter Ø [±0,1 mm]
19 mm
Height [±0,1 mm]
225 mm
Weight
0.01 g
492.00 ZŁ with VAT / pcs + price for transport
400.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Call us now
+48 888 99 98 98
otherwise let us know via
contact form
the contact section.
Weight and structure of neodymium magnets can be estimated on our
force calculator.
Same-day processing for orders placed before 14:00.
SM 19x225 [2xM6] / N50 - magnetic separator
Magnetic properties of material N50
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their superior power, neodymium magnets have these key benefits:
- They have constant strength, and over around 10 years their performance decreases symbolically – ~1% (in testing),
- They remain magnetized despite exposure to strong external fields,
- The use of a decorative nickel surface provides a smooth finish,
- They exhibit superior levels of magnetic induction near the outer area of the magnet,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which expands their functional possibilities,
- Important function in cutting-edge sectors – they are used in hard drives, electromechanical systems, clinical machines and other advanced devices,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of neodymium magnets:
- They are fragile when subjected to a strong impact. If the magnets are exposed to shocks, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall strength,
- They lose magnetic force at elevated temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a moist environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of rubber,
- Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing fine shapes directly in the magnet,
- Possible threat due to small fragments may arise, when consumed by mistake, which is important in the family environments. Moreover, minuscule fragments from these devices might hinder health screening after being swallowed,
- Due to a complex production process, their cost is relatively high,
Highest magnetic holding force – what contributes to it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, calculated in the best circumstances, namely:
- with mild steel, used as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a polished side
- with zero air gap
- under perpendicular detachment force
- at room temperature
Lifting capacity in practice – influencing factors
In practice, the holding capacity of a magnet is affected by the following aspects, in descending order of importance:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under perpendicular forces, however under attempts to slide the magnet the holding force is lower. In addition, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.
Exercise Caution with Neodymium Magnets
Keep neodymium magnets away from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets made of neodymium are fragile as well as can easily crack as well as get damaged.
Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.
If the joining of neodymium magnets is not under control, then they may crumble and also crack. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.
Keep neodymium magnets away from children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Safety rules!
So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.
