SM 19x225 [2xM6] / N50 - magnetic separator
magnetic separator
Catalog no 130241
GTIN: 5906301812708
Diameter Ø [±0,1 mm]
19 mm
Height [±0,1 mm]
225 mm
Weight
0.01 g
492.00 ZŁ with VAT / pcs + price for transport
400.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Pick up the phone and ask
+48 22 499 98 98
alternatively let us know using
request form
the contact page.
Force and form of magnetic components can be reviewed using our
force calculator.
Orders placed before 14:00 will be shipped the same business day.
SM 19x225 [2xM6] / N50 - magnetic separator
Magnetic properties of material N50
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their tremendous strength, neodymium magnets offer the following advantages:
- They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
- They show superior resistance to demagnetization from outside magnetic sources,
- The use of a decorative silver surface provides a eye-catching finish,
- Magnetic induction on the surface of these magnets is very strong,
- With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
- The ability for accurate shaping as well as customization to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
- Key role in cutting-edge sectors – they serve a purpose in hard drives, rotating machines, medical equipment as well as other advanced devices,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and additionally reinforces its overall resistance,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a damp environment, especially when used outside, we recommend using waterproof magnets, such as those made of plastic,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
- Potential hazard related to magnet particles may arise, in case of ingestion, which is significant in the family environments. Additionally, small elements from these magnets may interfere with diagnostics after being swallowed,
- Due to the price of neodymium, their cost is above average,
Optimal lifting capacity of a neodymium magnet – what contributes to it?
The given strength of the magnet corresponds to the optimal strength, assessed in the best circumstances, specifically:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a refined outer layer
- with no separation
- in a perpendicular direction of force
- at room temperature
Determinants of lifting force in real conditions
In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of optimal thickness, under a perpendicular pulling force, whereas under shearing force the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet’s surface and the plate decreases the holding force.
Precautions with Neodymium Magnets
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Do not give neodymium magnets to youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, can even cut off a finger or alternatively there can be a serious pressure or even a fracture.
Neodymium magnets are highly susceptible to damage, resulting in breaking.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Caution!
In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are very strong neodymium magnets?.