tel: +48 888 99 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our offer. Practically all magnesy on our website are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnets for searching F200 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight and durable steel casing are perfect for use in challenging climate conditions, including in the rain and snow more...

magnets with holders

Holders with magnets can be used to facilitate production processes, underwater exploration, or locating meteors from gold see more...

Enjoy delivery of your order on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x125 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130352

GTIN: 5906301813002

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

125 mm

Weight

670 g

381.30 with VAT / pcs + price for transport

310.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
310.00 ZŁ
381.30 ZŁ
price from 10 pcs
294.50 ZŁ
362.24 ZŁ
price from 15 pcs
279.00 ZŁ
343.17 ZŁ

Not sure about your choice?

Call us +48 22 499 98 98 alternatively send us a note via contact form the contact form page.
Force as well as structure of a magnet can be estimated on our modular calculator.

Order by 14:00 and we’ll ship today!

SM 32x125 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x125 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130352
GTIN
5906301813002
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
125 mm [±0,1 mm]
Weight
670 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are placed in a construction made of stainless steel mostly AISI304. Due to this, it is possible to efficiently separate ferromagnetic particles from other materials. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be collected. The thickness of the magnet and its structure's pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators serve to separate ferromagnetic elements. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers find application in the food industry to clear metallic contaminants, for example iron fragments or iron dust. Our rods are built from durable acid-resistant steel, EN 1.4301, intended for contact with food.
Magnetic rollers, otherwise magnetic separators, are used in metal separation, food production as well as recycling. They help in removing iron dust during the process of separating metals from other wastes.
Our magnetic rollers are built with a neodymium magnet placed in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, enabling quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Usually it is believed that the stronger the magnet, the more effective. Nevertheless, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines are more compressed. On the other hand, in the case of a thicker magnet, the force lines will be longer and extend over a greater distance.
For creating the casings of magnetic separators - rollers, usually stainless steel is employed, especially types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, type AISI 316 steel exhibits the best resistance due to its outstanding anti-corrosion properties.
Magnetic rollers are characterized by their unique configuration of poles and their capability to attract magnetic particles directly onto their surface, in contrast to other devices that often use complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve the need for regular cleaning, higher cost, and potential installation challenges.
By ensuring proper maintenance of neodymium magnetic rollers, you should they should be regularly cleaned, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Magnetic field measurements is recommended be carried out once every 24 months. Caution should be taken during use, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their strong power, neodymium magnets have these key benefits:

  • They have stable power, and over around 10 years their performance decreases symbolically – ~1% (in testing),
  • They protect against demagnetization induced by surrounding magnetic influence remarkably well,
  • The use of a polished nickel surface provides a refined finish,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for fine forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Important function in cutting-edge sectors – they serve a purpose in HDDs, electric drives, medical equipment along with other advanced devices,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time increases its overall strength,
  • They lose magnetic force at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a wet environment – during outdoor use, we recommend using sealed magnets, such as those made of plastic,
  • Limited ability to create internal holes in the magnet – the use of a housing is recommended,
  • Safety concern from tiny pieces may arise, especially if swallowed, which is crucial in the family environments. It should also be noted that minuscule fragments from these products have the potential to disrupt scanning once in the system,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Maximum lifting capacity of the magnetwhat it depends on?

The given lifting capacity of the magnet corresponds to the maximum lifting force, assessed in ideal conditions, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • in normal thermal conditions

Key elements affecting lifting force

The lifting capacity of a magnet depends on in practice key elements, from primary to secondary:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under parallel forces the holding force is lower. Moreover, even a small distance {between} the magnet’s surface and the plate reduces the holding force.

Exercise Caution with Neodymium Magnets

Magnets made of neodymium are noted for being fragile, which can cause them to become damaged.

Neodymium magnetic are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

 Keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a serious injury may occur. Magnets, depending on their size, are able even cut off a finger or there can be a serious pressure or even a fracture.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Be careful!

In order to illustrate why neodymium magnets are so dangerous, read the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98