tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our offer. All "magnets" in our store are available for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in airtight and durable steel casing are excellent for use in difficult climate conditions, including during snow and rain check...

magnetic holders

Holders with magnets can be applied to facilitate manufacturing, exploring underwater areas, or finding space rocks from gold read...

Enjoy shipping of your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 30x20x10 / N38 - lamellar magnet

lamellar magnet

Catalog no 020141

GTIN: 5906301811473

5

length [±0,1 mm]

30 mm

Width [±0,1 mm]

20 mm

Height [±0,1 mm]

10 mm

Weight

45 g

Magnetization Direction

↑ axial

Load capacity

17.29 kg / 169.56 N

Magnetic Induction

371.57 mT

Coating

[NiCuNi] nickel

14.50 with VAT / pcs + price for transport

11.79 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
11.79 ZŁ
14.50 ZŁ
price from 600 pcs
11.08 ZŁ
13.63 ZŁ
price from 2200 pcs
10.38 ZŁ
12.76 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 30x20x10 / N38 - lamellar magnet

Specification/characteristics MPL 30x20x10 / N38 - lamellar magnet
properties
values
Cat. no.
020141
GTIN
5906301811473
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
30 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
45 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
17.29 kg / 169.56 N
Magnetic Induction ~ ?
371.57 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets min. MPL 30x20x10 / N38 are magnets created from neodymium in a flat form. They are valued for their exceptionally potent magnetic properties, which are much stronger than traditional ferrite magnets.
Thanks to their mighty power, flat magnets are frequently applied in products that require strong holding power.
Typical temperature resistance of flat magnets is 80 °C, but with larger dimensions, this value can increase.
Moreover, flat magnets usually have special coatings applied to their surfaces, such as nickel, gold, or chrome, for enhancing their durability.
The magnet named MPL 30x20x10 / N38 and a lifting capacity of 17.29 kg with a weight of just 45 grams, making it the perfect choice for projects needing a flat magnet.
Neodymium flat magnets offer a range of advantages versus other magnet shapes, which lead to them being an ideal choice for many applications:
Contact surface: Thanks to their flat shape, flat magnets ensure a greater contact surface with other components, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These magnets are often applied in various devices, e.g. sensors, stepper motors, or speakers, where the flat shape is crucial for their operation.
Mounting: This form's flat shape simplifies mounting, especially when there's a need to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets gives the possibility creators greater flexibility in placing them in structures, which is more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet may offer better stability, minimizing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet is dependent on the specific application and requirements. In some cases, other shapes, like cylindrical or spherical, may be more appropriate.
How do magnets work? Magnets attract objects made of ferromagnetic materials, such as iron, nickel, materials with cobalt and special alloys of ferromagnetic metals. Additionally, magnets may weaker affect alloys containing iron, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
Magnets work thanks to the properties of their magnetic field, which is generated by the movement of electric charges within their material. The magnetic field of these objects creates attractive interactions, which attract materials containing cobalt or other magnetic materials.

Magnets have two poles: north (N) and south (S), which attract each other when they are different. Poles of the same kind, such as two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are regularly used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them indispensable for applications requiring powerful magnetic fields. Moreover, the strength of a magnet depends on its size and the materials used.
Magnets do not attract plastics, glass items, wood and most gemstones. Moreover, magnets do not affect most metals, such as copper items, aluminum materials, gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless exposed to a very strong magnetic field.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards and even electronic devices sensitive to magnetic fields. Therefore, it is important to exercise caution when using magnets.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by very high magnetic induction on the surface of the magnet and can operate (depending on the shape) even at temperatures of 230°C or higher...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in many variants of shapes or sizes, which amplifies their universality in usage.
  • Significant importance in modern technologies – are used in HDD drives, electric drive mechanisms, medical equipment or other advanced devices.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, it is suggested using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Possible danger arising from small pieces of magnets pose a threat, when accidentally ingested, which becomes significant in the aspect of protecting young children. Additionally, miniscule components of these devices have the potential to complicate diagnosis after entering the body.

Be Cautious with Neodymium Magnets

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are known for their fragility, which can cause them to shatter.

Neodymium magnets are characterized by considerable fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

 It is important to maintain neodymium magnets out of reach from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets may crack or alternatively crumble with uncontrolled joining to each other. You can't move them to each other. At a distance less than 10 cm you should have them very strongly.

Exercise caution!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98