MPL 30x20x10 / N38 - lamellar magnet
lamellar magnet
Catalog no 020141
GTIN/EAN: 5906301811473
length
30 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
45 g
Magnetization Direction
↑ axial
Load capacity
19.53 kg / 191.55 N
Magnetic Induction
371.57 mT / 3716 Gs
Coating
[NiCuNi] Nickel
16.11 ZŁ with VAT / pcs + price for transport
13.10 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 22 499 98 98
or drop us a message via
contact form
the contact section.
Specifications along with form of a neodymium magnet can be analyzed with our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
Product card - MPL 30x20x10 / N38 - lamellar magnet
Specification / characteristics - MPL 30x20x10 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020141 |
| GTIN/EAN | 5906301811473 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 30 mm [±0,1 mm] |
| Width | 20 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 45 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 19.53 kg / 191.55 N |
| Magnetic Induction ~ ? | 371.57 mT / 3716 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the assembly - technical parameters
The following information represent the direct effect of a physical analysis. Results are based on algorithms for the class Nd2Fe14B. Operational performance may differ from theoretical values. Please consider these calculations as a reference point during assembly planning.
Table 1: Static pull force (pull vs gap) - power drop
MPL 30x20x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3715 Gs
371.5 mT
|
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
dangerous! |
| 1 mm |
3464 Gs
346.4 mT
|
16.98 kg / 37.44 lbs
16983.1 g / 166.6 N
|
dangerous! |
| 2 mm |
3197 Gs
319.7 mT
|
14.47 kg / 31.89 lbs
14466.6 g / 141.9 N
|
dangerous! |
| 3 mm |
2927 Gs
292.7 mT
|
12.12 kg / 26.73 lbs
12123.3 g / 118.9 N
|
dangerous! |
| 5 mm |
2408 Gs
240.8 mT
|
8.21 kg / 18.10 lbs
8207.8 g / 80.5 N
|
medium risk |
| 10 mm |
1411 Gs
141.1 mT
|
2.82 kg / 6.21 lbs
2815.6 g / 27.6 N
|
medium risk |
| 15 mm |
832 Gs
83.2 mT
|
0.98 kg / 2.16 lbs
979.7 g / 9.6 N
|
weak grip |
| 20 mm |
512 Gs
51.2 mT
|
0.37 kg / 0.82 lbs
371.2 g / 3.6 N
|
weak grip |
| 30 mm |
224 Gs
22.4 mT
|
0.07 kg / 0.16 lbs
70.7 g / 0.7 N
|
weak grip |
| 50 mm |
65 Gs
6.5 mT
|
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
weak grip |
Table 2: Slippage capacity (wall)
MPL 30x20x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.91 kg / 8.61 lbs
3906.0 g / 38.3 N
|
| 1 mm | Stal (~0.2) |
3.40 kg / 7.49 lbs
3396.0 g / 33.3 N
|
| 2 mm | Stal (~0.2) |
2.89 kg / 6.38 lbs
2894.0 g / 28.4 N
|
| 3 mm | Stal (~0.2) |
2.42 kg / 5.34 lbs
2424.0 g / 23.8 N
|
| 5 mm | Stal (~0.2) |
1.64 kg / 3.62 lbs
1642.0 g / 16.1 N
|
| 10 mm | Stal (~0.2) |
0.56 kg / 1.24 lbs
564.0 g / 5.5 N
|
| 15 mm | Stal (~0.2) |
0.20 kg / 0.43 lbs
196.0 g / 1.9 N
|
| 20 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MPL 30x20x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
5.86 kg / 12.92 lbs
5859.0 g / 57.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.91 kg / 8.61 lbs
3906.0 g / 38.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
1.95 kg / 4.31 lbs
1953.0 g / 19.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
9.77 kg / 21.53 lbs
9765.0 g / 95.8 N
|
Table 4: Steel thickness (saturation) - sheet metal selection
MPL 30x20x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.98 kg / 2.15 lbs
976.5 g / 9.6 N
|
| 1 mm |
|
2.44 kg / 5.38 lbs
2441.3 g / 23.9 N
|
| 2 mm |
|
4.88 kg / 10.76 lbs
4882.5 g / 47.9 N
|
| 3 mm |
|
7.32 kg / 16.15 lbs
7323.8 g / 71.8 N
|
| 5 mm |
|
12.21 kg / 26.91 lbs
12206.3 g / 119.7 N
|
| 10 mm |
|
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
| 11 mm |
|
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
| 12 mm |
|
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
Table 5: Working in heat (stability) - resistance threshold
MPL 30x20x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
OK |
| 40 °C | -2.2% |
19.10 kg / 42.11 lbs
19100.3 g / 187.4 N
|
OK |
| 60 °C | -4.4% |
18.67 kg / 41.16 lbs
18670.7 g / 183.2 N
|
|
| 80 °C | -6.6% |
18.24 kg / 40.21 lbs
18241.0 g / 178.9 N
|
|
| 100 °C | -28.8% |
13.91 kg / 30.66 lbs
13905.4 g / 136.4 N
|
Table 6: Magnet-Magnet interaction (repulsion) - forces in the system
MPL 30x20x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
51.05 kg / 112.54 lbs
5 124 Gs
|
7.66 kg / 16.88 lbs
7657 g / 75.1 N
|
N/A |
| 1 mm |
47.76 kg / 105.28 lbs
7 186 Gs
|
7.16 kg / 15.79 lbs
7163 g / 70.3 N
|
42.98 kg / 94.76 lbs
~0 Gs
|
| 2 mm |
44.39 kg / 97.86 lbs
6 928 Gs
|
6.66 kg / 14.68 lbs
6658 g / 65.3 N
|
39.95 kg / 88.08 lbs
~0 Gs
|
| 3 mm |
41.06 kg / 90.52 lbs
6 663 Gs
|
6.16 kg / 13.58 lbs
6159 g / 60.4 N
|
36.95 kg / 81.47 lbs
~0 Gs
|
| 5 mm |
34.68 kg / 76.45 lbs
6 124 Gs
|
5.20 kg / 11.47 lbs
5202 g / 51.0 N
|
31.21 kg / 68.81 lbs
~0 Gs
|
| 10 mm |
21.45 kg / 47.30 lbs
4 817 Gs
|
3.22 kg / 7.09 lbs
3218 g / 31.6 N
|
19.31 kg / 42.57 lbs
~0 Gs
|
| 20 mm |
7.36 kg / 16.22 lbs
2 821 Gs
|
1.10 kg / 2.43 lbs
1104 g / 10.8 N
|
6.62 kg / 14.60 lbs
~0 Gs
|
| 50 mm |
0.40 kg / 0.89 lbs
662 Gs
|
0.06 kg / 0.13 lbs
61 g / 0.6 N
|
0.36 kg / 0.80 lbs
~0 Gs
|
| 60 mm |
0.18 kg / 0.41 lbs
447 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.37 lbs
~0 Gs
|
| 70 mm |
0.09 kg / 0.20 lbs
314 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 80 mm |
0.05 kg / 0.11 lbs
228 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 90 mm |
0.03 kg / 0.06 lbs
170 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.03 lbs
130 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - warnings
MPL 30x20x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 13.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 10.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 8.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 6.5 cm |
| Remote | 50 Gs (5.0 mT) | 6.0 cm |
| Payment card | 400 Gs (40.0 mT) | 2.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 2.0 cm |
Table 8: Dynamics (kinetic energy) - warning
MPL 30x20x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
22.82 km/h
(6.34 m/s)
|
0.90 J | |
| 30 mm |
36.47 km/h
(10.13 m/s)
|
2.31 J | |
| 50 mm |
46.99 km/h
(13.05 m/s)
|
3.83 J | |
| 100 mm |
66.44 km/h
(18.46 m/s)
|
7.66 J |
Table 9: Anti-corrosion coating durability
MPL 30x20x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MPL 30x20x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 22 801 Mx | 228.0 µWb |
| Pc Coefficient | 0.46 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 30x20x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 19.53 kg | Standard |
| Water (riverbed) |
22.36 kg
(+2.83 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical wall, the magnet holds just a fraction of its nominal pull.
2. Efficiency vs thickness
*Thin steel (e.g. computer case) significantly reduces the holding force.
3. Heat tolerance
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.46
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other offers
Pros and cons of Nd2Fe14B magnets.
Pros
- They do not lose magnetism, even during around ten years – the drop in power is only ~1% (based on measurements),
- They are resistant to demagnetization induced by external magnetic fields,
- In other words, due to the reflective surface of nickel, the element becomes visually attractive,
- Magnets are characterized by extremely high magnetic induction on the surface,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can work (depending on the shape) even at a temperature of 230°C or more...
- Possibility of exact creating as well as adjusting to individual requirements,
- Wide application in future technologies – they are used in magnetic memories, drive modules, medical equipment, and technologically advanced constructions.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in compact dimensions, which enables their usage in compact constructions
Limitations
- To avoid cracks upon strong impacts, we recommend using special steel holders. Such a solution secures the magnet and simultaneously increases its durability.
- We warn that neodymium magnets can reduce their power at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
- Magnets exposed to a humid environment can corrode. Therefore while using outdoors, we advise using waterproof magnets made of rubber, plastic or other material protecting against moisture
- Limited possibility of producing threads in the magnet and complex forms - preferred is a housing - mounting mechanism.
- Health risk to health – tiny shards of magnets can be dangerous, when accidentally swallowed, which becomes key in the context of child safety. It is also worth noting that tiny parts of these magnets are able to be problematic in diagnostics medical after entering the body.
- With large orders the cost of neodymium magnets can be a barrier,
Holding force characteristics
Maximum lifting force for a neodymium magnet – what affects it?
- with the contact of a sheet made of low-carbon steel, ensuring maximum field concentration
- with a thickness no less than 10 mm
- characterized by even structure
- without the slightest clearance between the magnet and steel
- for force applied at a right angle (pull-off, not shear)
- in stable room temperature
Practical aspects of lifting capacity – factors
- Distance (betwixt the magnet and the metal), since even a very small distance (e.g. 0.5 mm) leads to a decrease in force by up to 50% (this also applies to paint, rust or dirt).
- Force direction – catalog parameter refers to detachment vertically. When slipping, the magnet holds significantly lower power (often approx. 20-30% of nominal force).
- Steel thickness – insufficiently thick sheet causes magnetic saturation, causing part of the power to be wasted to the other side.
- Chemical composition of the base – mild steel gives the best results. Higher carbon content lower magnetic properties and lifting capacity.
- Surface condition – ground elements guarantee perfect abutment, which improves field saturation. Uneven metal reduce efficiency.
- Thermal environment – heating the magnet causes a temporary drop of force. It is worth remembering the maximum operating temperature for a given model.
Lifting capacity testing was carried out on a smooth plate of optimal thickness, under perpendicular forces, whereas under parallel forces the load capacity is reduced by as much as 5 times. Additionally, even a small distance between the magnet’s surface and the plate reduces the holding force.
Safety rules for work with NdFeB magnets
Combustion hazard
Powder produced during cutting of magnets is combustible. Avoid drilling into magnets without proper cooling and knowledge.
Bodily injuries
Danger of trauma: The pulling power is so great that it can cause hematomas, crushing, and even bone fractures. Use thick gloves.
Warning for allergy sufferers
Certain individuals experience a sensitization to Ni, which is the standard coating for NdFeB magnets. Frequent touching may cause an allergic reaction. It is best to wear safety gloves.
Choking Hazard
Product intended for adults. Small elements pose a choking risk, causing intestinal necrosis. Store out of reach of children and animals.
Medical implants
For implant holders: Strong magnetic fields disrupt medical devices. Keep minimum 30 cm distance or ask another person to work with the magnets.
Demagnetization risk
Avoid heat. NdFeB magnets are sensitive to heat. If you require operation above 80°C, ask us about special high-temperature series (H, SH, UH).
Eye protection
NdFeB magnets are sintered ceramics, which means they are very brittle. Collision of two magnets leads to them breaking into shards.
Keep away from electronics
An intense magnetic field disrupts the functioning of magnetometers in phones and GPS navigation. Maintain magnets near a smartphone to avoid breaking the sensors.
Conscious usage
Use magnets with awareness. Their huge power can shock even professionals. Stay alert and do not underestimate their force.
Electronic devices
Intense magnetic fields can erase data on payment cards, hard drives, and other magnetic media. Maintain a gap of min. 10 cm.
