tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our proposal. All "magnets" on our website are in stock for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnets for water searching F300 GOLD

Where to buy powerful magnet? Magnetic holders in airtight, solid steel enclosure are excellent for use in difficult, demanding weather conditions, including snow and rain check...

magnets with holders

Holders with magnets can be applied to enhance manufacturing, underwater exploration, or finding space rocks from gold see more...

Order is shipped on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 30x15x2 / N38 - lamellar magnet

lamellar magnet

Catalog no 020140

GTIN: 5906301811466

5

length [±0,1 mm]

30 mm

Width [±0,1 mm]

15 mm

Height [±0,1 mm]

2 mm

Weight

6.75 g

Magnetization Direction

↑ axial

Load capacity

3.35 kg / 32.85 N

Magnetic Induction

115.11 mT

Coating

[NiCuNi] nickel

3.89 with VAT / pcs + price for transport

3.16 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.16 ZŁ
3.89 ZŁ
price from 200 pcs
2.97 ZŁ
3.65 ZŁ
price from 800 pcs
2.78 ZŁ
3.42 ZŁ

Not sure which magnet to buy?

Give us a call +48 22 499 98 98 otherwise let us know using inquiry form the contact section.
Strength along with appearance of neodymium magnets can be tested with our our magnetic calculator.

Same-day shipping for orders placed before 14:00.

MPL 30x15x2 / N38 - lamellar magnet

Specification/characteristics MPL 30x15x2 / N38 - lamellar magnet
properties
values
Cat. no.
020140
GTIN
5906301811466
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
30 mm [±0,1 mm]
Width
15 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
6.75 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
3.35 kg / 32.85 N
Magnetic Induction ~ ?
115.11 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets i.e. MPL 30x15x2 / N38 are magnets created from neodymium in a rectangular form. They are valued for their very strong magnetic properties, which surpass traditional iron magnets.
Due to their power, flat magnets are commonly applied in products that need exceptional adhesion.
Typical temperature resistance of flat magnets is 80 °C, but with larger dimensions, this value rises.
In addition, flat magnets often have special coatings applied to their surfaces, such as nickel, gold, or chrome, for enhancing their corrosion resistance.
The magnet named MPL 30x15x2 / N38 i.e. a lifting capacity of 3.35 kg which weighs a mere 6.75 grams, making it the ideal choice for applications requiring a flat shape.
Neodymium flat magnets offer a range of advantages versus other magnet shapes, which make them being the best choice for a multitude of projects:
Contact surface: Due to their flat shape, flat magnets ensure a larger contact surface with other components, which can be beneficial in applications needing a stronger magnetic connection.
Technology applications: These magnets are often used in many devices, e.g. sensors, stepper motors, or speakers, where the flat shape is necessary for their operation.
Mounting: This form's flat shape makes mounting, particularly when it is necessary to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets permits creators greater flexibility in arranging them in structures, which can be more difficult with magnets of more complex shapes.
Stability: In some applications, the flat base of the flat magnet can offer better stability, minimizing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet depends on the given use and requirements. In some cases, other shapes, like cylindrical or spherical, are more appropriate.
How do magnets work? Magnets attract objects made of ferromagnetic materials, such as iron elements, nickel, cobalt or alloys of metals with magnetic properties. Additionally, magnets may weaker affect alloys containing iron, such as steel. Magnets are used in many fields.
The operation of magnets is based on the properties of their magnetic field, which arises from the ordered movement of electrons in their structure. The magnetic field of these objects creates attractive interactions, which affect objects made of cobalt or other magnetic materials.

Magnets have two main poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Poles of the same kind, e.g. two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are commonly used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its size and the material it is made of.
Not all materials react to magnets, and examples of such substances are plastic, glass items, wooden materials or most gemstones. Moreover, magnets do not affect certain metals, such as copper, aluminum, items made of gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless they are subjected to an extremely strong magnetic field.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards or electronic devices sensitive to magnetic fields. Therefore, it is important to exercise caution when using magnets.
A neodymium magnet in classes N52 and N50 is a powerful and strong metal object in the form of a plate, featuring strong holding power and broad usability. Good price, availability, ruggedness and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They have stable power, and over nearly 10 years their performance decreases symbolically – ~1% (in testing),
  • They remain magnetized despite exposure to magnetic noise,
  • Thanks to the shiny finish and nickel coating, they have an aesthetic appearance,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for tailored forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Key role in advanced technical fields – they find application in HDDs, electric motors, medical equipment as well as high-tech tools,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time increases its overall resistance,
  • They lose power at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a wet environment, especially when used outside, we recommend using encapsulated magnets, such as those made of non-metallic materials,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is restricted,
  • Possible threat linked to microscopic shards may arise, when consumed by mistake, which is important in the protection of children. It should also be noted that small elements from these assemblies may interfere with diagnostics when ingested,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Maximum holding power of the magnet – what it depends on?

The given lifting capacity of the magnet corresponds to the maximum lifting force, calculated in ideal conditions, specifically:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Practical aspects of lifting capacity – factors

The lifting capacity of a magnet depends on in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of optimal thickness, under a perpendicular pulling force, whereas under parallel forces the holding force is lower. In addition, even a small distance {between} the magnet and the plate decreases the holding force.

Handle Neodymium Magnets Carefully

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If have a finger between or on the path of attracting magnets, there may be a serious cut or a fracture.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are highly susceptible to damage, resulting in breaking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Be careful!

In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98