MPL 30x15x2 / N38 - lamellar magnet
lamellar magnet
Catalog no 020140
GTIN: 5906301811466
length [±0,1 mm]
30 mm
Width [±0,1 mm]
15 mm
Height [±0,1 mm]
2 mm
Weight
6.75 g
Magnetization Direction
↑ axial
Load capacity
3.35 kg / 32.85 N
Magnetic Induction
115.11 mT
Coating
[NiCuNi] nickel
3.89 ZŁ with VAT / pcs + price for transport
3.16 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Pick up the phone and ask
+48 22 499 98 98
otherwise let us know via
inquiry form
through our site.
Parameters along with appearance of neodymium magnets can be analyzed on our
force calculator.
Order by 14:00 and we’ll ship today!
MPL 30x15x2 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Due to their strength, flat magnets are frequently used in structures that require strong holding power.
Typical temperature resistance of these magnets is 80°C, but depending on the dimensions, this value rises.
Additionally, flat magnets usually have special coatings applied to their surfaces, such as nickel, gold, or chrome, to increase their strength.
The magnet with the designation MPL 30x15x2 / N38 i.e. a magnetic force 3.35 kg weighing just 6.75 grams, making it the perfect choice for applications requiring a flat shape.
Contact surface: Due to their flat shape, flat magnets guarantee a greater contact surface with other components, which can be beneficial in applications needing a stronger magnetic connection.
Technology applications: These are often utilized in many devices, such as sensors, stepper motors, or speakers, where the thin and wide shape is important for their operation.
Mounting: This form's flat shape simplifies mounting, especially when it is required to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets allows designers greater flexibility in arranging them in devices, which is more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, minimizing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet is dependent on the given use and requirements. In some cases, other shapes, such as cylindrical or spherical, may be more appropriate.
Magnets have two main poles: north (N) and south (S), which attract each other when they are different. Poles of the same kind, e.g. two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are commonly used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the material it is made of.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards and even electronic devices sensitive to magnetic fields. For this reason, it is important to exercise caution when using magnets.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their superior magnetism, neodymium magnets have these key benefits:
- They retain their full power for almost ten years – the drop is just ~1% (according to analyses),
- They remain magnetized despite exposure to strong external fields,
- By applying a shiny layer of silver, the element gains a modern look,
- They possess intense magnetic force measurable at the magnet’s surface,
- Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- The ability for accurate shaping as well as customization to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
- Key role in new technology industries – they find application in HDDs, electric motors, medical equipment along with other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks and additionally strengthens its overall resistance,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a damp environment. If exposed to rain, we recommend using waterproof magnets, such as those made of polymer,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
- Health risk linked to microscopic shards may arise, if ingested accidentally, which is significant in the context of child safety. Additionally, tiny components from these assemblies can interfere with diagnostics once in the system,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications
Detachment force of the magnet in optimal conditions – what affects it?
The given pulling force of the magnet corresponds to the maximum force, determined under optimal conditions, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- in conditions of no clearance
- under perpendicular detachment force
- in normal thermal conditions
What influences lifting capacity in practice
In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a small distance {between} the magnet and the plate reduces the load capacity.
Safety Precautions
Keep neodymium magnets away from the wallet, computer, and TV.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can demagnetize at high temperatures.
Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
People with pacemakers are advised to avoid neodymium magnets.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Magnets are not toys, youngest should not play with them.
Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
In the case of holding a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.
Neodymium magnets are characterized by being fragile, which can cause them to crumble.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can shock you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Be careful!
So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.