e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. Practically all magnesy neodymowe on our website are in stock for immediate purchase (check the list). Check out the magnet price list for more details check the magnet price list

Magnets for water searching F300 GOLD

Where to buy strong magnet? Magnet holders in airtight, solid steel enclosure are excellent for use in difficult, demanding climate conditions, including during snow and rain check...

magnets with holders

Magnetic holders can be applied to facilitate production processes, underwater discoveries, or locating meteors made of ore read...

Enjoy delivery of your order on the same day by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 30x15x2 / N38 - lamellar magnet

lamellar magnet

Catalog no 020140

GTIN: 5906301811466

5

length [±0,1 mm]

30 mm

Width [±0,1 mm]

15 mm

Height [±0,1 mm]

2 mm

Weight

6.75 g

Magnetization Direction

↑ axial

Load capacity

3.35 kg / 32.85 N

Magnetic Induction

115.11 mT

Coating

[NiCuNi] nickel

3.15 with VAT / pcs + price for transport

2.56 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.56 ZŁ
3.15 ZŁ
price from 600 pcs
2.41 ZŁ
2.96 ZŁ
price from 2200 pcs
2.25 ZŁ
2.77 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 30x15x2 / N38 - lamellar magnet

Specification/characteristics MPL 30x15x2 / N38 - lamellar magnet
properties
values
Cat. no.
020140
GTIN
5906301811466
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
30 mm [±0,1 mm]
Width
15 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
6.75 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
3.35 kg / 32.85 N
Magnetic Induction ~ ?
115.11 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets i.e. MPL 30x15x2 / N38 are magnets created from neodymium in a flat form. They are valued for their extremely powerful magnetic properties, which outshine traditional ferrite magnets.
Due to their strength, flat magnets are regularly applied in products that require very strong attraction.
Most common temperature resistance of flat magnets is 80 °C, but depending on the dimensions, this value grows.
Additionally, flat magnets usually have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, to improve their strength.
The magnet labeled MPL 30x15x2 / N38 i.e. a magnetic force 3.35 kg weighing a mere 6.75 grams, making it the perfect choice for projects needing a flat magnet.
Neodymium flat magnets present a range of advantages compared to other magnet shapes, which lead to them being the best choice for many applications:
Contact surface: Thanks to their flat shape, flat magnets guarantee a greater contact surface with other components, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These are often applied in many devices, such as sensors, stepper motors, or speakers, where the flat shape is necessary for their operation.
Mounting: The flat form's flat shape makes mounting, particularly when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows designers greater flexibility in arranging them in structures, which can be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, reducing the risk of shifting or rotating. It’s important to keep in mind that the optimal shape of the magnet depends on the specific application and requirements. In certain cases, other shapes, such as cylindrical or spherical, are more appropriate.
How do magnets work? Magnets attract objects made of ferromagnetic materials, such as iron, nickel, cobalt or alloys of metals with magnetic properties. Moreover, magnets may lesser affect alloys containing iron, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
Magnets work thanks to the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of magnets creates attractive interactions, which attract materials containing iron or other ferromagnetic substances.

Magnets have two main poles: north (N) and south (S), which interact with each other when they are different. Similar poles, such as two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are often used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them perfect for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its size and the material it is made of.
Magnets do not attract plastic, glass items, wooden materials and most gemstones. Furthermore, magnets do not affect most metals, such as copper items, aluminum, gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless exposed to a very strong magnetic field.
It’s worth noting that high temperatures can weaken the magnet's effect. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards and even electronic devices sensitive to magnetic fields. Therefore, it is important to exercise caution when using magnets.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
  • They are extremely resistant to demagnetization by external magnetic sources,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in many variants of shapes or sizes, which amplifies their universality in usage.
  • Key role in advanced technologically fields – are used in computer drives, electric drive mechanisms, medical devices and very advanced devices.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are extremely fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • High temperatures can reduce the power of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent reduction in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Possible danger arising from small pieces of magnets can be dangerous, if swallowed, which is crucial in the context of child safety. Furthermore, miniscule components of these devices can be problematic in medical diagnosis when they are in the body.

Caution with Neodymium Magnets

Avoid bringing neodymium magnets close to a phone or GPS.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

  Do not give neodymium magnets to youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If you have a finger between or on the path of attracting magnets, there may be a severe cut or a fracture.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Magnets made of neodymium are noted for being fragile, which can cause them to shatter.

Neodymium magnets are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Caution!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98