tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are in stock for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnet for searching F200 GOLD

Where to buy strong magnet? Magnet holders in airtight and durable enclosure are excellent for use in variable and difficult weather conditions, including snow and rain see...

magnets with holders

Magnetic holders can be used to improve production, exploring underwater areas, or searching for meteors made of ore see more...

Shipping always shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 30x15x2 / N38 - lamellar magnet

lamellar magnet

Catalog no 020140

GTIN: 5906301811466

5

length [±0,1 mm]

30 mm

Width [±0,1 mm]

15 mm

Height [±0,1 mm]

2 mm

Weight

6.75 g

Magnetization Direction

↑ axial

Load capacity

3.35 kg / 32.85 N

Magnetic Induction

115.11 mT

Coating

[NiCuNi] nickel

3.89 with VAT / pcs + price for transport

3.16 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.16 ZŁ
3.89 ZŁ
price from 200 pcs
2.97 ZŁ
3.65 ZŁ
price from 800 pcs
2.78 ZŁ
3.42 ZŁ

Need advice?

Contact us by phone +48 888 99 98 98 alternatively contact us by means of contact form through our site.
Weight as well as shape of neodymium magnets can be checked on our our magnetic calculator.

Same-day processing for orders placed before 14:00.

MPL 30x15x2 / N38 - lamellar magnet

Specification/characteristics MPL 30x15x2 / N38 - lamellar magnet
properties
values
Cat. no.
020140
GTIN
5906301811466
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
30 mm [±0,1 mm]
Width
15 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
6.75 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
3.35 kg / 32.85 N
Magnetic Induction ~ ?
115.11 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets i.e. MPL 30x15x2 / N38 are magnets created from neodymium in a rectangular form. They are valued for their extremely powerful magnetic properties, which surpass standard ferrite magnets.
Thanks to their mighty power, flat magnets are regularly used in devices that need strong holding power.
The standard temperature resistance of these magnets is 80°C, but depending on the dimensions, this value can increase.
Additionally, flat magnets usually have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, to improve their durability.
The magnet labeled MPL 30x15x2 / N38 i.e. a magnetic force 3.35 kg weighing only 6.75 grams, making it the excellent choice for projects needing a flat magnet.
Neodymium flat magnets offer a range of advantages compared to other magnet shapes, which cause them being the best choice for many applications:
Contact surface: Due to their flat shape, flat magnets guarantee a greater contact surface with other components, which can be beneficial in applications requiring a stronger magnetic connection.
Technology applications: These magnets are often applied in different devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is necessary for their operation.
Mounting: This form's flat shape makes mounting, especially when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets permits designers a lot of flexibility in arranging them in devices, which is more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet can provide better stability, reducing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet depends on the specific project and requirements. In certain cases, other shapes, like cylindrical or spherical, may be a better choice.
How do magnets work? Magnets attract ferromagnetic materials, such as iron, objects containing nickel, materials with cobalt or alloys of metals with magnetic properties. Additionally, magnets may lesser affect alloys containing iron, such as steel. Magnets are used in many fields.
Magnets work thanks to the properties of their magnetic field, which arises from the ordered movement of electrons in their structure. The magnetic field of magnets creates attractive forces, which affect materials containing iron or other magnetic materials.

Magnets have two poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Similar poles, e.g. two north poles, repel each other.
Thanks to this principle of operation, magnets are regularly used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them indispensable for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its size and the materials used.
Not all materials react to magnets, and examples of such substances are plastic, glass, wooden materials and precious stones. Moreover, magnets do not affect most metals, such as copper, aluminum, items made of gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless exposed to a very strong magnetic field.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as compasses, magnetic stripe cards and even electronic devices sensitive to magnetic fields. For this reason, it is important to avoid placing magnets near such devices.
A neodymium plate magnet in classes N50 and N52 is a strong and extremely powerful magnetic piece in the form of a plate, that provides high force and versatile application. Very good price, availability, resistance and broad range of uses.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They retain their attractive force for nearly 10 years – the drop is just ~1% (based on simulations),
  • They protect against demagnetization induced by ambient magnetic influence very well,
  • In other words, due to the shiny nickel coating, the magnet obtains an stylish appearance,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which expands their usage potential,
  • Significant impact in new technology industries – they are used in hard drives, rotating machines, medical equipment or even sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them ideal in miniature devices

Disadvantages of magnetic elements:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to shocks, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally reinforces its overall strength,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to damp air can rust. Therefore, for outdoor applications, we recommend waterproof types made of non-metallic composites,
  • Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is important in the protection of children. Additionally, small elements from these products may hinder health screening once in the system,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Maximum holding power of the magnet – what it depends on?

The given strength of the magnet represents the optimal strength, calculated in ideal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • at room temperature

Lifting capacity in practice – influencing factors

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed using a polished steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, however under parallel forces the holding force is lower. Additionally, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.

Safety Precautions

Neodymium magnets are the most powerful magnets ever created, and their power can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If the joining of neodymium magnets is not controlled, then they may crumble and also crack. You can't approach them to each other. At a distance less than 10 cm you should hold them extremely firmly.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are highly susceptible to damage, leading to breaking.

Magnets made of neodymium are highly fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Caution!

In order to illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98