MPL 30x15x2 / N38 - lamellar magnet
lamellar magnet
Catalog no 020140
GTIN: 5906301811466
length [±0,1 mm]
30 mm
Width [±0,1 mm]
15 mm
Height [±0,1 mm]
2 mm
Weight
6.75 g
Magnetization Direction
↑ axial
Load capacity
3.35 kg / 32.85 N
Magnetic Induction
115.11 mT
Coating
[NiCuNi] nickel
3.89 ZŁ with VAT / pcs + price for transport
3.16 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Pick up the phone and ask
+48 22 499 98 98
or send us a note by means of
form
the contact page.
Parameters as well as structure of a magnet can be verified with our
power calculator.
Orders placed before 14:00 will be shipped the same business day.
MPL 30x15x2 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They retain their magnetic properties for nearly 10 years – the loss is just ~1% (according to analyses),
- They show superior resistance to demagnetization from external magnetic fields,
- By applying a shiny layer of gold, the element gains a modern look,
- They possess strong magnetic force measurable at the magnet’s surface,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for customized forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
- Important function in advanced technical fields – they find application in data storage devices, electric drives, healthcare devices as well as sophisticated instruments,
- Thanks to their power density, small magnets offer high magnetic performance, with minimal size,
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and increases its overall strength,
- They lose strength at elevated temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a moist environment – during outdoor use, we recommend using encapsulated magnets, such as those made of rubber,
- Limited ability to create internal holes in the magnet – the use of a housing is recommended,
- Possible threat linked to microscopic shards may arise, in case of ingestion, which is notable in the protection of children. Furthermore, tiny components from these assemblies have the potential to complicate medical imaging after being swallowed,
- In cases of tight budgets, neodymium magnet cost may be a barrier,
Breakaway strength of the magnet in ideal conditions – what affects it?
The given pulling force of the magnet means the maximum force, determined in a perfect environment, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a refined outer layer
- with zero air gap
- in a perpendicular direction of force
- under standard ambient temperature
Magnet lifting force in use – key factors
The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under perpendicular forces, however under parallel forces the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet’s surface and the plate decreases the load capacity.
Exercise Caution with Neodymium Magnets
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Magnets may crack or crumble with careless joining to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them very firmly.
Neodymium magnets can become demagnetized at high temperatures.
Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnetic are noted for being fragile, which can cause them to shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Safety precautions!
In order to illustrate why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.
