MPL 30x15x2 / N38 - lamellar magnet
lamellar magnet
Catalog no 020140
GTIN/EAN: 5906301811466
length
30 mm [±0,1 mm]
Width
15 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
6.75 g
Magnetization Direction
↑ axial
Load capacity
2.11 kg / 20.74 N
Magnetic Induction
115.11 mT / 1151 Gs
Coating
[NiCuNi] Nickel
3.89 ZŁ with VAT / pcs + price for transport
3.16 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
if you prefer drop us a message by means of
form
the contact section.
Force as well as appearance of neodymium magnets can be analyzed on our
online calculation tool.
Orders submitted before 14:00 will be dispatched today!
Technical - MPL 30x15x2 / N38 - lamellar magnet
Specification / characteristics - MPL 30x15x2 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020140 |
| GTIN/EAN | 5906301811466 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 30 mm [±0,1 mm] |
| Width | 15 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 6.75 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.11 kg / 20.74 N |
| Magnetic Induction ~ ? | 115.11 mT / 1151 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the product - technical parameters
These values represent the result of a mathematical calculation. Results rely on models for the material Nd2Fe14B. Actual conditions might slightly deviate from the simulation results. Treat these calculations as a supplementary guide for designers.
Table 1: Static force (pull vs distance) - power drop
MPL 30x15x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
1151 Gs
115.1 mT
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
warning |
| 1 mm |
1098 Gs
109.8 mT
|
1.92 kg / 4.23 lbs
1920.5 g / 18.8 N
|
weak grip |
| 2 mm |
1019 Gs
101.9 mT
|
1.65 kg / 3.65 lbs
1654.9 g / 16.2 N
|
weak grip |
| 3 mm |
926 Gs
92.6 mT
|
1.37 kg / 3.01 lbs
1365.9 g / 13.4 N
|
weak grip |
| 5 mm |
733 Gs
73.3 mT
|
0.86 kg / 1.89 lbs
855.2 g / 8.4 N
|
weak grip |
| 10 mm |
379 Gs
37.9 mT
|
0.23 kg / 0.50 lbs
228.8 g / 2.2 N
|
weak grip |
| 15 mm |
203 Gs
20.3 mT
|
0.07 kg / 0.14 lbs
65.6 g / 0.6 N
|
weak grip |
| 20 mm |
116 Gs
11.6 mT
|
0.02 kg / 0.05 lbs
21.6 g / 0.2 N
|
weak grip |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 0.01 lbs
3.4 g / 0.0 N
|
weak grip |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
weak grip |
Table 2: Shear force (wall)
MPL 30x15x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.42 kg / 0.93 lbs
422.0 g / 4.1 N
|
| 1 mm | Stal (~0.2) |
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 0.73 lbs
330.0 g / 3.2 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
274.0 g / 2.7 N
|
| 5 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
172.0 g / 1.7 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MPL 30x15x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.63 kg / 1.40 lbs
633.0 g / 6.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.42 kg / 0.93 lbs
422.0 g / 4.1 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.21 kg / 0.47 lbs
211.0 g / 2.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.06 kg / 2.33 lbs
1055.0 g / 10.3 N
|
Table 4: Steel thickness (saturation) - sheet metal selection
MPL 30x15x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.21 kg / 0.47 lbs
211.0 g / 2.1 N
|
| 1 mm |
|
0.53 kg / 1.16 lbs
527.5 g / 5.2 N
|
| 2 mm |
|
1.06 kg / 2.33 lbs
1055.0 g / 10.3 N
|
| 3 mm |
|
1.58 kg / 3.49 lbs
1582.5 g / 15.5 N
|
| 5 mm |
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
| 10 mm |
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
| 11 mm |
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
| 12 mm |
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
Table 5: Thermal stability (material behavior) - resistance threshold
MPL 30x15x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
OK |
| 40 °C | -2.2% |
2.06 kg / 4.55 lbs
2063.6 g / 20.2 N
|
OK |
| 60 °C | -4.4% |
2.02 kg / 4.45 lbs
2017.2 g / 19.8 N
|
|
| 80 °C | -6.6% |
1.97 kg / 4.34 lbs
1970.7 g / 19.3 N
|
|
| 100 °C | -28.8% |
1.50 kg / 3.31 lbs
1502.3 g / 14.7 N
|
Table 6: Magnet-Magnet interaction (attraction) - field range
MPL 30x15x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.67 kg / 8.10 lbs
2 169 Gs
|
0.55 kg / 1.22 lbs
551 g / 5.4 N
|
N/A |
| 1 mm |
3.53 kg / 7.79 lbs
2 257 Gs
|
0.53 kg / 1.17 lbs
530 g / 5.2 N
|
3.18 kg / 7.01 lbs
~0 Gs
|
| 2 mm |
3.34 kg / 7.37 lbs
2 196 Gs
|
0.50 kg / 1.11 lbs
502 g / 4.9 N
|
3.01 kg / 6.64 lbs
~0 Gs
|
| 3 mm |
3.12 kg / 6.89 lbs
2 122 Gs
|
0.47 kg / 1.03 lbs
469 g / 4.6 N
|
2.81 kg / 6.20 lbs
~0 Gs
|
| 5 mm |
2.63 kg / 5.80 lbs
1 948 Gs
|
0.39 kg / 0.87 lbs
395 g / 3.9 N
|
2.37 kg / 5.22 lbs
~0 Gs
|
| 10 mm |
1.49 kg / 3.28 lbs
1 465 Gs
|
0.22 kg / 0.49 lbs
223 g / 2.2 N
|
1.34 kg / 2.96 lbs
~0 Gs
|
| 20 mm |
0.40 kg / 0.88 lbs
758 Gs
|
0.06 kg / 0.13 lbs
60 g / 0.6 N
|
0.36 kg / 0.79 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.03 lbs
142 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.01 lbs
92 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
63 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
44 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (electronics) - precautionary measures
MPL 30x15x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 7.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 5.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 4.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 3.5 cm |
| Car key | 50 Gs (5.0 mT) | 3.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (cracking risk) - warning
MPL 30x15x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
19.00 km/h
(5.28 m/s)
|
0.09 J | |
| 30 mm |
30.91 km/h
(8.59 m/s)
|
0.25 J | |
| 50 mm |
39.87 km/h
(11.08 m/s)
|
0.41 J | |
| 100 mm |
56.39 km/h
(15.66 m/s)
|
0.83 J |
Table 9: Corrosion resistance
MPL 30x15x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 30x15x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 6 236 Mx | 62.4 µWb |
| Pc Coefficient | 0.13 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MPL 30x15x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.11 kg | Standard |
| Water (riverbed) |
2.42 kg
(+0.31 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical surface, the magnet holds just a fraction of its max power.
2. Steel saturation
*Thin metal sheet (e.g. computer case) drastically limits the holding force.
3. Temperature resistance
*For N38 grade, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.13
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out also products
Strengths and weaknesses of rare earth magnets.
Pros
- Their magnetic field is durable, and after approximately ten years it drops only by ~1% (according to research),
- They do not lose their magnetic properties even under external field action,
- Thanks to the metallic finish, the plating of nickel, gold, or silver gives an modern appearance,
- Magnets possess excellent magnetic induction on the active area,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can work (depending on the shape) even at a temperature of 230°C or more...
- Thanks to the possibility of flexible shaping and adaptation to unique needs, magnetic components can be created in a broad palette of geometric configurations, which amplifies use scope,
- Wide application in advanced technology sectors – they serve a role in computer drives, electric motors, medical devices, as well as multitasking production systems.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in tiny dimensions, which allows their use in small systems
Cons
- To avoid cracks upon strong impacts, we recommend using special steel holders. Such a solution secures the magnet and simultaneously improves its durability.
- Neodymium magnets lose their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- Magnets exposed to a humid environment can rust. Therefore when using outdoors, we recommend using waterproof magnets made of rubber, plastic or other material protecting against moisture
- Limited ability of making nuts in the magnet and complicated forms - recommended is cover - magnet mounting.
- Possible danger related to microscopic parts of magnets can be dangerous, in case of ingestion, which is particularly important in the aspect of protecting the youngest. It is also worth noting that small components of these devices are able to be problematic in diagnostics medical when they are in the body.
- Due to neodymium price, their price is relatively high,
Lifting parameters
Best holding force of the magnet in ideal parameters – what contributes to it?
- on a block made of structural steel, effectively closing the magnetic field
- with a cross-section no less than 10 mm
- with a surface free of scratches
- with direct contact (without paint)
- for force acting at a right angle (in the magnet axis)
- at ambient temperature room level
Lifting capacity in practice – influencing factors
- Gap between surfaces – even a fraction of a millimeter of separation (caused e.g. by varnish or unevenness) drastically reduces the magnet efficiency, often by half at just 0.5 mm.
- Force direction – remember that the magnet has greatest strength perpendicularly. Under shear forces, the holding force drops drastically, often to levels of 20-30% of the maximum value.
- Metal thickness – thin material does not allow full use of the magnet. Part of the magnetic field penetrates through instead of converting into lifting capacity.
- Steel grade – the best choice is high-permeability steel. Hardened steels may generate lower lifting capacity.
- Surface quality – the more even the surface, the larger the contact zone and higher the lifting capacity. Unevenness acts like micro-gaps.
- Operating temperature – neodymium magnets have a sensitivity to temperature. At higher temperatures they lose power, and at low temperatures they can be stronger (up to a certain limit).
Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, however under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a slight gap between the magnet and the plate lowers the load capacity.
H&S for magnets
ICD Warning
Life threat: Strong magnets can turn off pacemakers and defibrillators. Do not approach if you have electronic implants.
Dust is flammable
Fire hazard: Neodymium dust is explosive. Do not process magnets without safety gear as this may cause fire.
Choking Hazard
Always store magnets away from children. Risk of swallowing is significant, and the effects of magnets connecting inside the body are fatal.
Sensitization to coating
Studies show that the nickel plating (standard magnet coating) is a potent allergen. If your skin reacts to metals, prevent touching magnets with bare hands or opt for encased magnets.
Eye protection
NdFeB magnets are sintered ceramics, meaning they are fragile like glass. Collision of two magnets will cause them shattering into small pieces.
Powerful field
Exercise caution. Rare earth magnets attract from a distance and snap with massive power, often faster than you can react.
Keep away from computers
Data protection: Strong magnets can ruin data carriers and sensitive devices (pacemakers, medical aids, timepieces).
Phone sensors
Navigation devices and mobile phones are highly susceptible to magnetism. Close proximity with a powerful NdFeB magnet can permanently damage the sensors in your phone.
Demagnetization risk
Watch the temperature. Exposing the magnet above 80 degrees Celsius will permanently weaken its properties and strength.
Finger safety
Watch your fingers. Two powerful magnets will join immediately with a force of massive weight, destroying everything in their path. Exercise extreme caution!
