e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. Practically all "neodymium magnets" in our store are available for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for water searching F200 GOLD

Where to buy very strong neodymium magnet? Magnet holders in airtight and durable steel casing are excellent for use in difficult, demanding weather conditions, including in the rain and snow more...

magnetic holders

Holders with magnets can be used to enhance manufacturing, underwater discoveries, or finding meteors made of ore see...

Shipping is always shipped on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MP 20x8/4x3 / N38 - neodymium magnet

ring magnet

catalog number 030187

GTIN: 5906301812043

5.0

external diameter Ø

20 mm [±0,1 mm]

internal diameter Ø

8/4 mm [±0,1 mm]

height

3 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

1.03 kg / 10.10 N

magnetic induction ~

336.17 mT / 3,362 Gs

max. temperature

≤ 80 °C

2.60 gross price (including VAT) / pcs +

2.11 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
2.11 ZŁ
2.60 ZŁ
price from 285 pcs
1.98 ZŁ
2.44 ZŁ
price from 1043 pcs
1.86 ZŁ
2.29 ZŁ

Want a better price?

Call us tel: +48 22 499 98 98 or get in touch via form on our website. You can check the lifting capacity and the appearance of neodymium magnets in our power calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: ring magnet 20x8/4x3 / N38 ↑ axial

Characteristics: ring magnet 20x8/4x3 / N38 ↑ axial
Properties
Values
catalog number
030187
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
external diameter Ø
20 mm [±0,1 mm]
internal diameter Ø
8/4 mm [±0,1 mm]
height
3 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
1.03 kg / 10.10 N
magnetic induction ~ ?
336.17 mT / 3,362 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
9.90 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Due to specific properties, neodymium element MP 20x8/4x3 / N38 in a ring form finds extensive use in various industries. Thanks to a powerful magnetic field of 1.03 kg, which can be described as strength, they are very helpful in applications that require high magnetic power in a relatively small area. Applications of MP 20x8/4x3 / N38 magnets include electrical mechanisms, generating systems, sound devices, and several other devices that use magnets for producing motion or energy storage. Despite their significant strength, they have a comparatively low weight of 9.90 grams, which makes them more convenient to use compared to heavier alternatives.
The operation of ring magnets results from their unique atomic structure. In the production process, neodymium atoms are arranged appropriately, which allows for generating a strong and precise magnetic field. This makes them perfect for devices such as stepper motors or industrial robots. Moreover, ring magnets are resistant to demagnetization.
They are used in various fields of technology and industry, such as electronics, e.g., in the production of speakers or electric motors, automotive, where they are used in brushless electric motors, and medical equipment, e.g., in scanning devices. Their ability to work in high temperatures and precise magnetic field control makes them indispensable in challenging industrial conditions.
Ring magnets stand out extraordinary pulling power, resistance to high temperatures, and precision in generating the magnetic field. Thanks to their ring shape allows for effective use in devices such as motors or speakers. Additionally, these magnets are significantly stronger and more versatile than ferrite counterparts, which has made them popular in advanced technologies and industrial applications.
Thanks to their resistance to high temperatures, ring magnets operate reliably even in tough conditions. They do not lose their magnetic properties, until the Curie temperature is exceeded, which for neodymium magnets is around 80°C. They are more resistant to loss of magnetism than traditional ferrite magnets. For this reason, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.

Product suggestions

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time. After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which enhances their versatility in applications.
  • Key role in modern technologies – are utilized in hard drives, electric motors, medical apparatus and very advanced devices.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Potential hazard associated with microscopic parts of magnets are risky, in case of ingestion, which is particularly important in the context of child safety. Furthermore, small elements of these magnets have the potential to complicate diagnosis in case of swallowing.

Be Cautious with Neodymium Magnets

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnets are delicate and can easily break as well as get damaged.

Neodymium magnetic are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will crack or crumble with uncontrolled connecting to each other. You can't move them to each other. At a distance less than 10 cm you should hold them very firmly.

  Neodymium magnets should not be in the vicinity children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98