tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our proposal. All magnesy in our store are in stock for immediate purchase (see the list). Check out the magnet pricing for more details check the magnet price list

Magnets for water searching F400 GOLD

Where to purchase strong magnet? Magnetic holders in airtight, solid enclosure are ideally suited for use in difficult weather, including during rain and snow more information...

magnetic holders

Magnetic holders can be applied to enhance manufacturing, underwater discoveries, or searching for meteorites made of metal more...

We promise to ship your order on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x175 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130272

GTIN: 5906301812746

0

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

175 mm

Weight

0.01 g

387.45 with VAT / pcs + price for transport

315.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
315.00 ZŁ
387.45 ZŁ
price from 8 pcs
299.25 ZŁ
368.08 ZŁ
price from 14 pcs
283.50 ZŁ
348.70 ZŁ

Hunting for a discount?

Pick up the phone and ask +48 22 499 98 98 otherwise send us a note through request form the contact section.
Force along with form of magnetic components can be analyzed on our force calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 18x175 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x175 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130272
GTIN
5906301812746
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
175 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are placed in a construction made of stainless steel mostly AISI304. Due to this, it is possible to efficiently separate ferromagnetic elements from other materials. An important element of its operation is the use of repulsion of magnetic poles N and S, which allows magnetic substances to be collected. The thickness of the embedded magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to separate ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers find application in the food industry to clear metallic contaminants, such as iron fragments or iron dust. Our rollers are constructed from acid-resistant steel, AISI 304, intended for contact with food.
Magnetic rollers, otherwise magnetic separators, are used in metal separation, food production as well as recycling. They help in eliminating iron dust during the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets anchored in a tube of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded holes - 18 mm, which enables simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the greater the magnet's power, the more efficient it is. Nevertheless, the effectiveness of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines are more compressed. Otherwise, in the case of a thicker magnet, the force lines will be extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, frequently stainless steel is utilized, especially types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, AISI 316 steel is recommended thanks to its excellent anti-corrosion properties.
Magnetic bars stand out for their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, as opposed to other separators that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. Disadvantages may include the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, you should they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Magnetic field measurements should be carried out every two years. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They do not lose their magnetism, even after approximately 10 years – the decrease of strength is only ~1% (according to tests),
  • They show strong resistance to demagnetization from external field exposure,
  • The use of a polished gold surface provides a smooth finish,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their functional possibilities,
  • Significant impact in cutting-edge sectors – they are utilized in data storage devices, rotating machines, clinical machines as well as technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them ideal in small systems

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to external force, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture while also enhances its overall strength,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of plastic for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a housing is recommended,
  • Possible threat linked to microscopic shards may arise, if ingested accidentally, which is significant in the context of child safety. Furthermore, small elements from these magnets have the potential to hinder health screening when ingested,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Safety Guidelines with Neodymium Magnets

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will jump and contact together within a radius of several to almost 10 cm from each other.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are highly susceptible to damage, resulting in their cracking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Safety rules!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98