MPL 12x10x4 / N38 - lamellar magnet
lamellar magnet
Catalog no 020118
GTIN/EAN: 5906301811244
length
12 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
3.6 g
Magnetization Direction
↑ axial
Load capacity
3.45 kg / 33.88 N
Magnetic Induction
340.59 mT / 3406 Gs
Coating
[NiCuNi] Nickel
1.697 ZŁ with VAT / pcs + price for transport
1.380 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 22 499 98 98
alternatively let us know using
form
our website.
Strength along with structure of magnets can be tested using our
modular calculator.
Order by 14:00 and we’ll ship today!
Detailed specification - MPL 12x10x4 / N38 - lamellar magnet
Specification / characteristics - MPL 12x10x4 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020118 |
| GTIN/EAN | 5906301811244 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 12 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 3.6 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 3.45 kg / 33.88 N |
| Magnetic Induction ~ ? | 340.59 mT / 3406 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical analysis of the assembly - technical parameters
Presented information constitute the direct effect of a engineering analysis. Values are based on models for the material Nd2Fe14B. Real-world performance may differ. Please consider these data as a preliminary roadmap during assembly planning.
Table 1: Static pull force (force vs distance) - interaction chart
MPL 12x10x4 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3404 Gs
340.4 mT
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
strong |
| 1 mm |
2920 Gs
292.0 mT
|
2.54 kg / 5.60 lbs
2538.8 g / 24.9 N
|
strong |
| 2 mm |
2399 Gs
239.9 mT
|
1.71 kg / 3.78 lbs
1713.7 g / 16.8 N
|
safe |
| 3 mm |
1919 Gs
191.9 mT
|
1.10 kg / 2.42 lbs
1096.3 g / 10.8 N
|
safe |
| 5 mm |
1190 Gs
119.0 mT
|
0.42 kg / 0.93 lbs
421.6 g / 4.1 N
|
safe |
| 10 mm |
392 Gs
39.2 mT
|
0.05 kg / 0.10 lbs
45.7 g / 0.4 N
|
safe |
| 15 mm |
162 Gs
16.2 mT
|
0.01 kg / 0.02 lbs
7.8 g / 0.1 N
|
safe |
| 20 mm |
80 Gs
8.0 mT
|
0.00 kg / 0.00 lbs
1.9 g / 0.0 N
|
safe |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
safe |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Shear capacity (vertical surface)
MPL 12x10x4 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| 1 mm | Stal (~0.2) |
0.51 kg / 1.12 lbs
508.0 g / 5.0 N
|
| 2 mm | Stal (~0.2) |
0.34 kg / 0.75 lbs
342.0 g / 3.4 N
|
| 3 mm | Stal (~0.2) |
0.22 kg / 0.49 lbs
220.0 g / 2.2 N
|
| 5 mm | Stal (~0.2) |
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MPL 12x10x4 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
1.04 kg / 2.28 lbs
1035.0 g / 10.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.73 kg / 3.80 lbs
1725.0 g / 16.9 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MPL 12x10x4 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| 1 mm |
|
0.86 kg / 1.90 lbs
862.5 g / 8.5 N
|
| 2 mm |
|
1.73 kg / 3.80 lbs
1725.0 g / 16.9 N
|
| 3 mm |
|
2.59 kg / 5.70 lbs
2587.5 g / 25.4 N
|
| 5 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 10 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 11 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 12 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
Table 5: Thermal resistance (stability) - thermal limit
MPL 12x10x4 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
OK |
| 40 °C | -2.2% |
3.37 kg / 7.44 lbs
3374.1 g / 33.1 N
|
OK |
| 60 °C | -4.4% |
3.30 kg / 7.27 lbs
3298.2 g / 32.4 N
|
|
| 80 °C | -6.6% |
3.22 kg / 7.10 lbs
3222.3 g / 31.6 N
|
|
| 100 °C | -28.8% |
2.46 kg / 5.42 lbs
2456.4 g / 24.1 N
|
Table 6: Magnet-Magnet interaction (attraction) - field collision
MPL 12x10x4 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.57 kg / 18.90 lbs
4 915 Gs
|
1.29 kg / 2.84 lbs
1286 g / 12.6 N
|
N/A |
| 1 mm |
7.46 kg / 16.44 lbs
6 349 Gs
|
1.12 kg / 2.47 lbs
1118 g / 11.0 N
|
6.71 kg / 14.79 lbs
~0 Gs
|
| 2 mm |
6.31 kg / 13.91 lbs
5 841 Gs
|
0.95 kg / 2.09 lbs
946 g / 9.3 N
|
5.68 kg / 12.52 lbs
~0 Gs
|
| 3 mm |
5.23 kg / 11.53 lbs
5 317 Gs
|
0.78 kg / 1.73 lbs
784 g / 7.7 N
|
4.71 kg / 10.37 lbs
~0 Gs
|
| 5 mm |
3.42 kg / 7.55 lbs
4 302 Gs
|
0.51 kg / 1.13 lbs
513 g / 5.0 N
|
3.08 kg / 6.79 lbs
~0 Gs
|
| 10 mm |
1.05 kg / 2.31 lbs
2 380 Gs
|
0.16 kg / 0.35 lbs
157 g / 1.5 N
|
0.94 kg / 2.08 lbs
~0 Gs
|
| 20 mm |
0.11 kg / 0.25 lbs
784 Gs
|
0.02 kg / 0.04 lbs
17 g / 0.2 N
|
0.10 kg / 0.23 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
90 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
55 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (implants) - warnings
MPL 12x10x4 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 6.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 3.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 3.0 cm |
| Car key | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MPL 12x10x4 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
31.48 km/h
(8.74 m/s)
|
0.14 J | |
| 30 mm |
54.08 km/h
(15.02 m/s)
|
0.41 J | |
| 50 mm |
69.81 km/h
(19.39 m/s)
|
0.68 J | |
| 100 mm |
98.73 km/h
(27.42 m/s)
|
1.35 J |
Table 9: Surface protection spec
MPL 12x10x4 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MPL 12x10x4 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 4 295 Mx | 42.9 µWb |
| Pc Coefficient | 0.43 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 12x10x4 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 3.45 kg | Standard |
| Water (riverbed) |
3.95 kg
(+0.50 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical wall, the magnet holds just approx. 20-30% of its max power.
2. Efficiency vs thickness
*Thin metal sheet (e.g. 0.5mm PC case) significantly weakens the holding force.
3. Thermal stability
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.43
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out also deals
Strengths and weaknesses of Nd2Fe14B magnets.
Strengths
- They do not lose magnetism, even during approximately ten years – the reduction in strength is only ~1% (theoretically),
- Magnets perfectly defend themselves against demagnetization caused by external fields,
- A magnet with a metallic nickel surface is more attractive,
- Neodymium magnets generate maximum magnetic induction on a contact point, which ensures high operational effectiveness,
- Through (adequate) combination of ingredients, they can achieve high thermal resistance, allowing for functioning at temperatures reaching 230°C and above...
- In view of the option of precise molding and adaptation to individualized projects, NdFeB magnets can be produced in a broad palette of forms and dimensions, which expands the range of possible applications,
- Fundamental importance in high-tech industry – they serve a role in computer drives, electric motors, precision medical tools, as well as technologically advanced constructions.
- Thanks to efficiency per cm³, small magnets offer high operating force, with minimal size,
Disadvantages
- To avoid cracks under impact, we suggest using special steel housings. Such a solution secures the magnet and simultaneously increases its durability.
- Neodymium magnets lose their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
- They oxidize in a humid environment. For use outdoors we advise using waterproof magnets e.g. in rubber, plastic
- Due to limitations in realizing threads and complicated shapes in magnets, we recommend using cover - magnetic mount.
- Possible danger resulting from small fragments of magnets can be dangerous, if swallowed, which gains importance in the aspect of protecting the youngest. Additionally, small components of these products are able to be problematic in diagnostics medical in case of swallowing.
- High unit price – neodymium magnets cost more than other types of magnets (e.g. ferrite), which hinders application in large quantities
Pull force analysis
Maximum lifting force for a neodymium magnet – what affects it?
- with the application of a sheet made of special test steel, guaranteeing full magnetic saturation
- with a thickness of at least 10 mm
- characterized by lack of roughness
- with zero gap (without coatings)
- during detachment in a direction vertical to the mounting surface
- at temperature room level
Magnet lifting force in use – key factors
- Clearance – existence of any layer (rust, dirt, gap) acts as an insulator, which reduces capacity steeply (even by 50% at 0.5 mm).
- Force direction – declared lifting capacity refers to pulling vertically. When slipping, the magnet holds significantly lower power (typically approx. 20-30% of maximum force).
- Wall thickness – the thinner the sheet, the weaker the hold. Magnetic flux penetrates through instead of converting into lifting capacity.
- Material type – ideal substrate is high-permeability steel. Hardened steels may generate lower lifting capacity.
- Plate texture – smooth surfaces ensure maximum contact, which improves field saturation. Rough surfaces weaken the grip.
- Thermal conditions – NdFeB sinters have a negative temperature coefficient. At higher temperatures they are weaker, and at low temperatures gain strength (up to a certain limit).
Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Additionally, even a slight gap between the magnet and the plate decreases the load capacity.
H&S for magnets
Beware of splinters
Despite the nickel coating, neodymium is delicate and cannot withstand shocks. Do not hit, as the magnet may shatter into sharp, dangerous pieces.
Physical harm
Mind your fingers. Two powerful magnets will join instantly with a force of massive weight, destroying anything in their path. Exercise extreme caution!
Do not give to children
Adult use only. Tiny parts pose a choking risk, leading to serious injuries. Keep out of reach of kids and pets.
Safe distance
Equipment safety: Neodymium magnets can ruin data carriers and delicate electronics (pacemakers, medical aids, timepieces).
Impact on smartphones
A powerful magnetic field interferes with the functioning of magnetometers in smartphones and navigation systems. Do not bring magnets near a smartphone to avoid breaking the sensors.
Combustion hazard
Powder created during grinding of magnets is self-igniting. Do not drill into magnets without proper cooling and knowledge.
Skin irritation risks
Warning for allergy sufferers: The nickel-copper-nickel coating contains nickel. If an allergic reaction occurs, cease working with magnets and wear gloves.
Maximum temperature
Keep cool. NdFeB magnets are susceptible to heat. If you need operation above 80°C, inquire about special high-temperature series (H, SH, UH).
Handling rules
Be careful. Rare earth magnets act from a long distance and snap with huge force, often quicker than you can react.
Life threat
Warning for patients: Powerful magnets disrupt electronics. Keep minimum 30 cm distance or request help to handle the magnets.
