MPL 10x7x3 / N38 - lamellar magnet
lamellar magnet
Catalog no 020115
GTIN/EAN: 5906301811213
length
10 mm [±0,1 mm]
Width
7 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
1.58 g
Magnetization Direction
↑ axial
Load capacity
2.02 kg / 19.82 N
Magnetic Induction
339.79 mT / 3398 Gs
Coating
[NiCuNi] Nickel
0.849 ZŁ with VAT / pcs + price for transport
0.690 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
alternatively get in touch using
request form
the contact page.
Force along with form of magnetic components can be tested with our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
Technical specification of the product - MPL 10x7x3 / N38 - lamellar magnet
Specification / characteristics - MPL 10x7x3 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020115 |
| GTIN/EAN | 5906301811213 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 10 mm [±0,1 mm] |
| Width | 7 mm [±0,1 mm] |
| Height | 3 mm [±0,1 mm] |
| Weight | 1.58 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.02 kg / 19.82 N |
| Magnetic Induction ~ ? | 339.79 mT / 3398 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the assembly - report
The following data constitute the outcome of a mathematical calculation. Results rely on algorithms for the material Nd2Fe14B. Operational performance may differ. Treat these data as a reference point when designing systems.
Table 1: Static pull force (pull vs distance) - characteristics
MPL 10x7x3 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3396 Gs
339.6 mT
|
2.02 kg / 4.45 lbs
2020.0 g / 19.8 N
|
medium risk |
| 1 mm |
2727 Gs
272.7 mT
|
1.30 kg / 2.87 lbs
1303.2 g / 12.8 N
|
safe |
| 2 mm |
2053 Gs
205.3 mT
|
0.74 kg / 1.63 lbs
738.2 g / 7.2 N
|
safe |
| 3 mm |
1502 Gs
150.2 mT
|
0.40 kg / 0.87 lbs
395.2 g / 3.9 N
|
safe |
| 5 mm |
803 Gs
80.3 mT
|
0.11 kg / 0.25 lbs
113.0 g / 1.1 N
|
safe |
| 10 mm |
216 Gs
21.6 mT
|
0.01 kg / 0.02 lbs
8.2 g / 0.1 N
|
safe |
| 15 mm |
82 Gs
8.2 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
safe |
| 20 mm |
39 Gs
3.9 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
safe |
| 30 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Shear capacity (vertical surface)
MPL 10x7x3 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.40 kg / 0.89 lbs
404.0 g / 4.0 N
|
| 1 mm | Stal (~0.2) |
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| 2 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 3 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MPL 10x7x3 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.61 kg / 1.34 lbs
606.0 g / 5.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.40 kg / 0.89 lbs
404.0 g / 4.0 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.20 kg / 0.45 lbs
202.0 g / 2.0 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.01 kg / 2.23 lbs
1010.0 g / 9.9 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MPL 10x7x3 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.20 kg / 0.45 lbs
202.0 g / 2.0 N
|
| 1 mm |
|
0.51 kg / 1.11 lbs
505.0 g / 5.0 N
|
| 2 mm |
|
1.01 kg / 2.23 lbs
1010.0 g / 9.9 N
|
| 3 mm |
|
1.52 kg / 3.34 lbs
1515.0 g / 14.9 N
|
| 5 mm |
|
2.02 kg / 4.45 lbs
2020.0 g / 19.8 N
|
| 10 mm |
|
2.02 kg / 4.45 lbs
2020.0 g / 19.8 N
|
| 11 mm |
|
2.02 kg / 4.45 lbs
2020.0 g / 19.8 N
|
| 12 mm |
|
2.02 kg / 4.45 lbs
2020.0 g / 19.8 N
|
Table 5: Thermal stability (stability) - power drop
MPL 10x7x3 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.02 kg / 4.45 lbs
2020.0 g / 19.8 N
|
OK |
| 40 °C | -2.2% |
1.98 kg / 4.36 lbs
1975.6 g / 19.4 N
|
OK |
| 60 °C | -4.4% |
1.93 kg / 4.26 lbs
1931.1 g / 18.9 N
|
|
| 80 °C | -6.6% |
1.89 kg / 4.16 lbs
1886.7 g / 18.5 N
|
|
| 100 °C | -28.8% |
1.44 kg / 3.17 lbs
1438.2 g / 14.1 N
|
Table 6: Two magnets (repulsion) - field collision
MPL 10x7x3 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.98 kg / 10.97 lbs
4 893 Gs
|
0.75 kg / 1.65 lbs
746 g / 7.3 N
|
N/A |
| 1 mm |
4.09 kg / 9.01 lbs
6 155 Gs
|
0.61 kg / 1.35 lbs
613 g / 6.0 N
|
3.68 kg / 8.11 lbs
~0 Gs
|
| 2 mm |
3.21 kg / 7.08 lbs
5 455 Gs
|
0.48 kg / 1.06 lbs
482 g / 4.7 N
|
2.89 kg / 6.37 lbs
~0 Gs
|
| 3 mm |
2.44 kg / 5.39 lbs
4 758 Gs
|
0.37 kg / 0.81 lbs
366 g / 3.6 N
|
2.20 kg / 4.85 lbs
~0 Gs
|
| 5 mm |
1.34 kg / 2.94 lbs
3 518 Gs
|
0.20 kg / 0.44 lbs
200 g / 2.0 N
|
1.20 kg / 2.65 lbs
~0 Gs
|
| 10 mm |
0.28 kg / 0.61 lbs
1 606 Gs
|
0.04 kg / 0.09 lbs
42 g / 0.4 N
|
0.25 kg / 0.55 lbs
~0 Gs
|
| 20 mm |
0.02 kg / 0.04 lbs
433 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
43 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
26 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - warnings
MPL 10x7x3 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 4.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 3.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 3.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 2.0 cm |
| Remote | 50 Gs (5.0 mT) | 2.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Collisions (kinetic energy) - warning
MPL 10x7x3 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
36.15 km/h
(10.04 m/s)
|
0.08 J | |
| 30 mm |
62.46 km/h
(17.35 m/s)
|
0.24 J | |
| 50 mm |
80.63 km/h
(22.40 m/s)
|
0.40 J | |
| 100 mm |
114.03 km/h
(31.68 m/s)
|
0.79 J |
Table 9: Anti-corrosion coating durability
MPL 10x7x3 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MPL 10x7x3 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 2 480 Mx | 24.8 µWb |
| Pc Coefficient | 0.42 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MPL 10x7x3 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.02 kg | Standard |
| Water (riverbed) |
2.31 kg
(+0.29 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical wall, the magnet retains just a fraction of its perpendicular strength.
2. Plate thickness effect
*Thin metal sheet (e.g. computer case) drastically reduces the holding force.
3. Power loss vs temp
*For N38 material, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.42
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out more deals
Strengths and weaknesses of Nd2Fe14B magnets.
Pros
- They retain magnetic properties for around ten years – the drop is just ~1% (in theory),
- They are resistant to demagnetization induced by external magnetic fields,
- The use of an metallic layer of noble metals (nickel, gold, silver) causes the element to present itself better,
- Magnetic induction on the working layer of the magnet is maximum,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the shape) even at high temperatures reaching 230°C or more...
- In view of the ability of flexible molding and customization to unique solutions, magnetic components can be created in a broad palette of geometric configurations, which makes them more universal,
- Fundamental importance in advanced technology sectors – they serve a role in mass storage devices, drive modules, medical equipment, as well as multitasking production systems.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in small dimensions, which allows their use in small systems
Cons
- To avoid cracks upon strong impacts, we suggest using special steel holders. Such a solution secures the magnet and simultaneously increases its durability.
- Neodymium magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent weakening of power (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- They rust in a humid environment - during use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- We recommend a housing - magnetic mount, due to difficulties in creating nuts inside the magnet and complex shapes.
- Health risk to health – tiny shards of magnets are risky, when accidentally swallowed, which gains importance in the context of child health protection. Additionally, tiny parts of these products can be problematic in diagnostics medical in case of swallowing.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Lifting parameters
Maximum magnetic pulling force – what contributes to it?
- using a base made of mild steel, serving as a circuit closing element
- possessing a massiveness of at least 10 mm to avoid saturation
- with an ground contact surface
- without the slightest clearance between the magnet and steel
- under axial force direction (90-degree angle)
- at standard ambient temperature
Key elements affecting lifting force
- Clearance – existence of any layer (rust, tape, gap) interrupts the magnetic circuit, which reduces capacity rapidly (even by 50% at 0.5 mm).
- Pull-off angle – remember that the magnet holds strongest perpendicularly. Under sliding down, the holding force drops significantly, often to levels of 20-30% of the nominal value.
- Element thickness – for full efficiency, the steel must be sufficiently thick. Paper-thin metal limits the lifting capacity (the magnet "punches through" it).
- Metal type – different alloys attracts identically. High carbon content worsen the interaction with the magnet.
- Surface finish – full contact is obtained only on polished steel. Any scratches and bumps reduce the real contact area, weakening the magnet.
- Thermal environment – heating the magnet results in weakening of force. It is worth remembering the maximum operating temperature for a given model.
Lifting capacity was assessed with the use of a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under shearing force the lifting capacity is smaller. In addition, even a small distance between the magnet and the plate lowers the lifting capacity.
Safety rules for work with NdFeB magnets
Threat to electronics
Intense magnetic fields can corrupt files on payment cards, HDDs, and storage devices. Maintain a gap of min. 10 cm.
Mechanical processing
Dust generated during cutting of magnets is flammable. Avoid drilling into magnets unless you are an expert.
Immense force
Before starting, check safety instructions. Uncontrolled attraction can destroy the magnet or hurt your hand. Think ahead.
Magnet fragility
Neodymium magnets are sintered ceramics, meaning they are very brittle. Clashing of two magnets will cause them cracking into small pieces.
Maximum temperature
Avoid heat. NdFeB magnets are susceptible to heat. If you need resistance above 80°C, inquire about HT versions (H, SH, UH).
Finger safety
Watch your fingers. Two large magnets will snap together immediately with a force of several hundred kilograms, crushing anything in their path. Be careful!
Allergy Warning
Studies show that nickel (standard magnet coating) is a strong allergen. If you have an allergy, refrain from touching magnets with bare hands or select versions in plastic housing.
Pacemakers
Warning for patients: Powerful magnets affect electronics. Maintain at least 30 cm distance or ask another person to handle the magnets.
Magnetic interference
GPS units and smartphones are extremely sensitive to magnetism. Close proximity with a powerful NdFeB magnet can decalibrate the internal compass in your phone.
No play value
Absolutely keep magnets out of reach of children. Risk of swallowing is high, and the consequences of magnets connecting inside the body are life-threatening.
