Neodymiums – wide shape selection

Want to buy really powerful magnets? Our range includes rich assortment of various shapes and sizes. They are ideal for domestic applications, garage and model making. Check our offer with fast shipping.

see full offer

Equipment for treasure hunters

Start your adventure involving underwater treasure hunting! Our specialized grips (F200, F400) provide safety guarantee and huge lifting capacity. Stainless steel construction and reinforced ropes will perform in rivers and lakes.

choose your set

Professional threaded grips

Proven solutions for fixing without drilling. Threaded grips (external or internal) guarantee instant organization of work on production halls. Perfect for mounting lighting, detectors and ads.

see industrial applications

🚚 Order by 14:00 – we'll ship same day!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MPL 20x5x3 / N38 - lamellar magnet

lamellar magnet

Catalog no 020131

GTIN/EAN: 5906301811374

5.00

length

20 mm [±0,1 mm]

Width

5 mm [±0,1 mm]

Height

3 mm [±0,1 mm]

Weight

2.25 g

Magnetization Direction

↑ axial

Load capacity

3.46 kg / 33.96 N

Magnetic Induction

358.88 mT / 3589 Gs

Coating

[NiCuNi] Nickel

1.058 with VAT / pcs + price for transport

0.860 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.860 ZŁ
1.058 ZŁ
price from 700 pcs
0.808 ZŁ
0.994 ZŁ
price from 3000 pcs
0.757 ZŁ
0.931 ZŁ
Do you have problems deciding?

Pick up the phone and ask +48 22 499 98 98 or send us a note through inquiry form through our site.
Lifting power and structure of magnets can be calculated with our force calculator.

Same-day shipping for orders placed before 14:00.

Technical of the product - MPL 20x5x3 / N38 - lamellar magnet

Specification / characteristics - MPL 20x5x3 / N38 - lamellar magnet

properties
properties values
Cat. no. 020131
GTIN/EAN 5906301811374
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
length 20 mm [±0,1 mm]
Width 5 mm [±0,1 mm]
Height 3 mm [±0,1 mm]
Weight 2.25 g
Magnetization Direction ↑ axial
Load capacity ~ ? 3.46 kg / 33.96 N
Magnetic Induction ~ ? 358.88 mT / 3589 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MPL 20x5x3 / N38 - lamellar magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering modeling of the assembly - data

The following data represent the result of a physical simulation. Results rely on models for the material Nd2Fe14B. Operational performance may differ. Treat these calculations as a reference point when designing systems.

Table 1: Static force (pull vs distance) - interaction chart
MPL 20x5x3 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 3585 Gs
358.5 mT
3.46 kg / 7.63 lbs
3460.0 g / 33.9 N
strong
1 mm 2619 Gs
261.9 mT
1.85 kg / 4.07 lbs
1846.6 g / 18.1 N
safe
2 mm 1818 Gs
181.8 mT
0.89 kg / 1.96 lbs
889.8 g / 8.7 N
safe
3 mm 1279 Gs
127.9 mT
0.44 kg / 0.97 lbs
440.2 g / 4.3 N
safe
5 mm 696 Gs
69.6 mT
0.13 kg / 0.29 lbs
130.6 g / 1.3 N
safe
10 mm 225 Gs
22.5 mT
0.01 kg / 0.03 lbs
13.6 g / 0.1 N
safe
15 mm 97 Gs
9.7 mT
0.00 kg / 0.01 lbs
2.5 g / 0.0 N
safe
20 mm 49 Gs
4.9 mT
0.00 kg / 0.00 lbs
0.6 g / 0.0 N
safe
30 mm 17 Gs
1.7 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
safe
50 mm 4 Gs
0.4 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe

Table 2: Shear force (wall)
MPL 20x5x3 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.69 kg / 1.53 lbs
692.0 g / 6.8 N
1 mm Stal (~0.2) 0.37 kg / 0.82 lbs
370.0 g / 3.6 N
2 mm Stal (~0.2) 0.18 kg / 0.39 lbs
178.0 g / 1.7 N
3 mm Stal (~0.2) 0.09 kg / 0.19 lbs
88.0 g / 0.9 N
5 mm Stal (~0.2) 0.03 kg / 0.06 lbs
26.0 g / 0.3 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Vertical assembly (shearing) - vertical pull
MPL 20x5x3 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
1.04 kg / 2.29 lbs
1038.0 g / 10.2 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.69 kg / 1.53 lbs
692.0 g / 6.8 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.35 kg / 0.76 lbs
346.0 g / 3.4 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
1.73 kg / 3.81 lbs
1730.0 g / 17.0 N

Table 4: Steel thickness (substrate influence) - power losses
MPL 20x5x3 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.35 kg / 0.76 lbs
346.0 g / 3.4 N
1 mm
25%
0.87 kg / 1.91 lbs
865.0 g / 8.5 N
2 mm
50%
1.73 kg / 3.81 lbs
1730.0 g / 17.0 N
3 mm
75%
2.59 kg / 5.72 lbs
2595.0 g / 25.5 N
5 mm
100%
3.46 kg / 7.63 lbs
3460.0 g / 33.9 N
10 mm
100%
3.46 kg / 7.63 lbs
3460.0 g / 33.9 N
11 mm
100%
3.46 kg / 7.63 lbs
3460.0 g / 33.9 N
12 mm
100%
3.46 kg / 7.63 lbs
3460.0 g / 33.9 N

Table 5: Working in heat (stability) - resistance threshold
MPL 20x5x3 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 3.46 kg / 7.63 lbs
3460.0 g / 33.9 N
OK
40 °C -2.2% 3.38 kg / 7.46 lbs
3383.9 g / 33.2 N
OK
60 °C -4.4% 3.31 kg / 7.29 lbs
3307.8 g / 32.4 N
80 °C -6.6% 3.23 kg / 7.12 lbs
3231.6 g / 31.7 N
100 °C -28.8% 2.46 kg / 5.43 lbs
2463.5 g / 24.2 N

Table 6: Two magnets (repulsion) - field collision
MPL 20x5x3 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Lateral Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 7.92 kg / 17.47 lbs
4 860 Gs
1.19 kg / 2.62 lbs
1189 g / 11.7 N
N/A
1 mm 5.94 kg / 13.10 lbs
6 209 Gs
0.89 kg / 1.97 lbs
891 g / 8.7 N
5.35 kg / 11.79 lbs
~0 Gs
2 mm 4.23 kg / 9.32 lbs
5 238 Gs
0.63 kg / 1.40 lbs
634 g / 6.2 N
3.81 kg / 8.39 lbs
~0 Gs
3 mm 2.94 kg / 6.49 lbs
4 369 Gs
0.44 kg / 0.97 lbs
441 g / 4.3 N
2.65 kg / 5.84 lbs
~0 Gs
5 mm 1.42 kg / 3.14 lbs
3 039 Gs
0.21 kg / 0.47 lbs
213 g / 2.1 N
1.28 kg / 2.82 lbs
~0 Gs
10 mm 0.30 kg / 0.66 lbs
1 393 Gs
0.04 kg / 0.10 lbs
45 g / 0.4 N
0.27 kg / 0.59 lbs
~0 Gs
20 mm 0.03 kg / 0.07 lbs
450 Gs
0.00 kg / 0.01 lbs
5 g / 0.0 N
0.03 kg / 0.06 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
56 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
34 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
23 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
16 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
11 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
8 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Hazards (electronics) - precautionary measures
MPL 20x5x3 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 5.0 cm
Hearing aid 10 Gs (1.0 mT) 4.0 cm
Timepiece 20 Gs (2.0 mT) 3.0 cm
Mobile device 40 Gs (4.0 mT) 2.5 cm
Remote 50 Gs (5.0 mT) 2.0 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 1.0 cm

Table 8: Collisions (kinetic energy) - collision effects
MPL 20x5x3 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 39.65 km/h
(11.01 m/s)
0.14 J
30 mm 68.50 km/h
(19.03 m/s)
0.41 J
50 mm 88.43 km/h
(24.56 m/s)
0.68 J
100 mm 125.06 km/h
(34.74 m/s)
1.36 J

Table 9: Corrosion resistance
MPL 20x5x3 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Flux)
MPL 20x5x3 / N38

Parameter Value SI Unit / Description
Magnetic Flux 3 197 Mx 32.0 µWb
Pc Coefficient 0.36 Low (Flat)

Table 11: Hydrostatics and buoyancy
MPL 20x5x3 / N38

Environment Effective steel pull Effect
Air (land) 3.46 kg Standard
Water (riverbed) 3.96 kg
(+0.50 kg buoyancy gain)
+14.5%
Corrosion warning: Remember to wipe the magnet thoroughly after removing it from water and apply a protective layer (e.g., oil) to avoid corrosion.
1. Sliding resistance

*Caution: On a vertical surface, the magnet retains merely approx. 20-30% of its perpendicular strength.

2. Efficiency vs thickness

*Thin metal sheet (e.g. 0.5mm PC case) drastically limits the holding force.

3. Temperature resistance

*For standard magnets, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.36

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical specification and ecology
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Sustainability
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 020131-2026
Quick Unit Converter
Pulling force

Field Strength

Other proposals

Model MPL 20x5x3 / N38 features a low profile and professional pulling force, making it a perfect solution for building separators and machines. This magnetic block with a force of 33.96 N is ready for shipment in 24h, allowing for rapid realization of your project. Furthermore, its Ni-Cu-Ni coating protects it against corrosion in standard operating conditions, giving it an aesthetic appearance.
The key to success is sliding the magnets along their largest connection plane (using e.g., the edge of a table), which is easier than trying to tear them apart directly. Watch your fingers! Magnets with a force of 3.46 kg can pinch very hard and cause hematomas. Using a screwdriver risks destroying the coating and permanently cracking the magnet.
Plate magnets MPL 20x5x3 / N38 are the foundation for many industrial devices, such as magnetic separators and linear motors. They work great as fasteners under tiles, wood, or glass. Their rectangular shape facilitates precise gluing into milled sockets in wood or plastic.
Cyanoacrylate glues (super glue type) are good only for small magnets; for larger plates, we recommend resins. For lighter applications or mounting on smooth surfaces, branded foam tape (e.g., 3M VHB) will work, provided the surface is perfectly degreased. Avoid chemically aggressive glues or hot glue, which can demagnetize neodymium (above 80°C).
Standardly, the MPL 20x5x3 / N38 model is magnetized through the thickness (dimension 3 mm), which means that the N and S poles are located on its largest, flat surfaces. In practice, this means that this magnet has the greatest attraction force on its main planes (20x5 mm), which is ideal for flat mounting. Such a pole arrangement ensures maximum holding capacity when pressing against the sheet, creating a closed magnetic circuit.
The presented product is a neodymium magnet with precisely defined parameters: 20 mm (length), 5 mm (width), and 3 mm (thickness). It is a magnetic block with dimensions 20x5x3 mm and a self-weight of 2.25 g, ready to work at temperatures up to 80°C. The product meets the standards for N38 grade magnets.

Strengths as well as weaknesses of neodymium magnets.

Strengths

Besides their magnetic performance, neodymium magnets are valued for these benefits:
  • Their power is durable, and after approximately 10 years it drops only by ~1% (theoretically),
  • They are extremely resistant to demagnetization induced by external magnetic fields,
  • The use of an refined coating of noble metals (nickel, gold, silver) causes the element to look better,
  • Magnets are characterized by excellent magnetic induction on the active area,
  • Thanks to resistance to high temperature, they are able to function (depending on the form) even at temperatures up to 230°C and higher...
  • Thanks to the possibility of precise forming and customization to unique needs, neodymium magnets can be modeled in a variety of geometric configurations, which amplifies use scope,
  • Huge importance in high-tech industry – they are used in hard drives, brushless drives, precision medical tools, also other advanced devices.
  • Thanks to concentrated force, small magnets offer high operating force, in miniature format,

Disadvantages

Cons of neodymium magnets and proposals for their use:
  • Susceptibility to cracking is one of their disadvantages. Upon intense impact they can fracture. We recommend keeping them in a strong case, which not only secures them against impacts but also raises their durability
  • Neodymium magnets lose their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
  • Magnets exposed to a humid environment can corrode. Therefore during using outdoors, we recommend using waterproof magnets made of rubber, plastic or other material resistant to moisture
  • We suggest a housing - magnetic mount, due to difficulties in creating nuts inside the magnet and complicated shapes.
  • Health risk related to microscopic parts of magnets pose a threat, when accidentally swallowed, which gains importance in the context of child health protection. It is also worth noting that tiny parts of these devices are able to disrupt the diagnostic process medical when they are in the body.
  • High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which hinders application in large quantities

Pull force analysis

Highest magnetic holding forcewhat affects it?

The force parameter is a theoretical maximum value executed under specific, ideal conditions:
  • with the contact of a yoke made of special test steel, ensuring maximum field concentration
  • with a cross-section of at least 10 mm
  • with an polished touching surface
  • without any air gap between the magnet and steel
  • under axial application of breakaway force (90-degree angle)
  • at ambient temperature approx. 20 degrees Celsius

What influences lifting capacity in practice

Bear in mind that the application force will differ subject to elements below, in order of importance:
  • Distance – existence of any layer (paint, tape, air) interrupts the magnetic circuit, which reduces capacity rapidly (even by 50% at 0.5 mm).
  • Load vector – maximum parameter is available only during perpendicular pulling. The resistance to sliding of the magnet along the surface is typically many times smaller (approx. 1/5 of the lifting capacity).
  • Wall thickness – thin material does not allow full use of the magnet. Part of the magnetic field penetrates through instead of generating force.
  • Steel grade – ideal substrate is pure iron steel. Stainless steels may have worse magnetic properties.
  • Smoothness – ideal contact is obtained only on smooth steel. Any scratches and bumps reduce the real contact area, weakening the magnet.
  • Thermal environment – temperature increase results in weakening of induction. It is worth remembering the maximum operating temperature for a given model.

Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under attempts to slide the magnet the load capacity is reduced by as much as fivefold. In addition, even a small distance between the magnet and the plate reduces the lifting capacity.

Warnings
Crushing risk

Risk of injury: The attraction force is so immense that it can cause blood blisters, crushing, and even bone fractures. Use thick gloves.

No play value

Product intended for adults. Tiny parts can be swallowed, leading to intestinal necrosis. Store out of reach of kids and pets.

Heat sensitivity

Avoid heat. Neodymium magnets are susceptible to temperature. If you require operation above 80°C, look for special high-temperature series (H, SH, UH).

Life threat

For implant holders: Powerful magnets affect medical devices. Maintain minimum 30 cm distance or request help to handle the magnets.

Cards and drives

Do not bring magnets near a wallet, laptop, or screen. The magnetism can destroy these devices and erase data from cards.

Sensitization to coating

Certain individuals experience a hypersensitivity to Ni, which is the standard coating for NdFeB magnets. Frequent touching can result in skin redness. We recommend wear safety gloves.

Combustion hazard

Combustion risk: Rare earth powder is explosive. Avoid machining magnets in home conditions as this may cause fire.

Material brittleness

Neodymium magnets are sintered ceramics, meaning they are very brittle. Collision of two magnets leads to them cracking into shards.

Safe operation

Use magnets consciously. Their powerful strength can shock even experienced users. Plan your moves and do not underestimate their power.

Impact on smartphones

A powerful magnetic field negatively affects the operation of magnetometers in phones and GPS navigation. Maintain magnets near a device to prevent damaging the sensors.

Important! Learn more about risks in the article: Safety of working with magnets.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98