e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our proposal. All "neodymium magnets" in our store are available for immediate purchase (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for searching F200 GOLD

Where to purchase strong magnet? Holders with magnets in airtight and durable steel enclosure are perfect for use in difficult weather, including snow and rain see...

magnetic holders

Holders with magnets can be used to enhance production, underwater discoveries, or searching for meteorites made of ore check...

Enjoy shipping of your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 20x5x3 / N38 - lamellar magnet

lamellar magnet

Catalog no 020131

GTIN: 5906301811374

5

length [±0,1 mm]

20 mm

Width [±0,1 mm]

5 mm

Height [±0,1 mm]

3 mm

Weight

2.25 g

Magnetization Direction

↑ axial

Load capacity

2.37 kg / 23.24 N

Magnetic Induction

358.88 mT

Coating

[NiCuNi] nickel

1.058 with VAT / pcs + price for transport

0.860 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.860 ZŁ
1.058 ZŁ
price from 700 pcs
0.808 ZŁ
0.994 ZŁ
price from 3000 pcs
0.757 ZŁ
0.931 ZŁ

Want to talk magnets?

Call us +48 888 99 98 98 or contact us via our online form the contact section.
Parameters along with form of a magnet can be reviewed using our online calculation tool.

Same-day shipping for orders placed before 14:00.

MPL 20x5x3 / N38 - lamellar magnet

Specification/characteristics MPL 20x5x3 / N38 - lamellar magnet
properties
values
Cat. no.
020131
GTIN
5906301811374
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
20 mm [±0,1 mm]
Width
5 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
2.25 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
2.37 kg / 23.24 N
Magnetic Induction ~ ?
358.88 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets min. MPL 20x5x3 / N38 are magnets created from neodymium in a flat form. They are valued for their extremely powerful magnetic properties, which surpass traditional iron magnets.
Due to their strength, flat magnets are commonly applied in devices that need strong holding power.
Typical temperature resistance of flat magnets is 80 °C, but depending on the dimensions, this value grows.
Moreover, flat magnets often have special coatings applied to their surfaces, such as nickel, gold, or chrome, to improve their corrosion resistance.
The magnet labeled MPL 20x5x3 / N38 and a lifting capacity of 2.37 kg which weighs just 2.25 grams, making it the ideal choice for projects needing a flat magnet.
Neodymium flat magnets offer a range of advantages compared to other magnet shapes, which lead to them being a perfect solution for a multitude of projects:
Contact surface: Thanks to their flat shape, flat magnets guarantee a larger contact surface with adjacent parts, which can be beneficial in applications needing a stronger magnetic connection.
Technology applications: These are often applied in different devices, such as sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: This form's flat shape makes mounting, especially when it is required to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets permits designers a lot of flexibility in arranging them in structures, which can be more difficult with magnets of more complex shapes.
Stability: In some applications, the flat base of the flat magnet can provide better stability, reducing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet depends on the specific application and requirements. In certain cases, other shapes, such as cylindrical or spherical, are a better choice.
Attracted by magnets are objects made of ferromagnetic materials, such as iron elements, nickel, materials with cobalt or alloys of metals with magnetic properties. Additionally, magnets may weaker affect alloys containing iron, such as steel. Magnets are used in many fields.
Magnets work thanks to the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of magnets creates attractive forces, which attract materials containing nickel or other magnetic materials.

Magnets have two poles: north (N) and south (S), which attract each other when they are different. Similar poles, e.g. two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are commonly used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them ideal for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the materials used.
Not all materials react to magnets, and examples of such substances are plastics, glass, wooden materials and most gemstones. Moreover, magnets do not affect certain metals, such as copper, aluminum materials, gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless they are subjected to an extremely strong magnetic field.
It should be noted that high temperatures can weaken the magnet's effect. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as compasses, credit cards and even medical equipment, like pacemakers. Therefore, it is important to avoid placing magnets near such devices.
A neodymium magnet in classes N50 and N52 is a powerful and highly strong magnetic product designed as a plate, that provides high force and versatile application. Attractive price, 24h delivery, stability and broad range of uses.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their superior power, neodymium magnets have these key benefits:

  • They retain their magnetic properties for nearly ten years – the drop is just ~1% (in theory),
  • They are highly resistant to demagnetization caused by external magnetic sources,
  • Thanks to the shiny finish and nickel coating, they have an elegant appearance,
  • Magnetic induction on the surface of these magnets is very strong,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for tailored forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Key role in modern technologies – they find application in HDDs, rotating machines, medical equipment along with sophisticated instruments,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall resistance,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of polymer,
  • Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
  • Health risk related to magnet particles may arise, if ingested accidentally, which is significant in the health of young users. It should also be noted that miniature parts from these products have the potential to disrupt scanning after being swallowed,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Maximum lifting force for a neodymium magnet – what affects it?

The given lifting capacity of the magnet means the maximum lifting force, determined in the best circumstances, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured by applying a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, however under parallel forces the load capacity is reduced by as much as 75%. Additionally, even a minimal clearance {between} the magnet and the plate reduces the load capacity.

Caution with Neodymium Magnets

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

  Magnets are not toys, children should not play with them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Magnets made of neodymium are highly fragile, they easily break as well as can crumble.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

In the case of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Caution!

So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98