tel: +48 22 499 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. All magnesy neodymowe in our store are in stock for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy very strong neodymium magnet? Magnetic holders in airtight and durable steel enclosure are perfect for use in variable and difficult climate conditions, including snow and rain see...

magnets with holders

Magnetic holders can be used to improve production, underwater exploration, or finding meteors from gold check...

Shipping is shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 20x10x1 / N38 - lamellar magnet

lamellar magnet

Catalog no 020126

GTIN: 5906301811329

5

length [±0,1 mm]

20 mm

Width [±0,1 mm]

10 mm

Height [±0,1 mm]

1 mm

Weight

1.5 g

Magnetization Direction

↑ axial

Load capacity

1.12 kg / 10.98 N

Magnetic Induction

87.15 mT

Coating

[NiCuNi] nickel

0.95 with VAT / pcs + price for transport

0.77 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.77 ZŁ
0.95 ZŁ
price from 600 pcs
0.72 ZŁ
0.89 ZŁ
price from 2200 pcs
0.68 ZŁ
0.83 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 20x10x1 / N38 - lamellar magnet

Specification/characteristics MPL 20x10x1 / N38 - lamellar magnet
properties
values
Cat. no.
020126
GTIN
5906301811329
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
20 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
1 mm [±0,1 mm]
Weight
1.5 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.12 kg / 10.98 N
Magnetic Induction ~ ?
87.15 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets i.e. MPL 20x10x1 / N38 are magnets made from neodymium in a rectangular form. They are valued for their extremely powerful magnetic properties, which surpass traditional ferrite magnets.
Due to their strength, flat magnets are frequently applied in structures that require very strong attraction.
The standard temperature resistance of these magnets is 80°C, but with larger dimensions, this value can increase.
Additionally, flat magnets often have special coatings applied to their surfaces, such as nickel, gold, or chrome, to increase their durability.
The magnet labeled MPL 20x10x1 / N38 i.e. a magnetic strength 1.12 kg weighing just 1.5 grams, making it the ideal choice for projects needing a flat magnet.
Neodymium flat magnets present a range of advantages versus other magnet shapes, which lead to them being a perfect solution for many applications:
Contact surface: Due to their flat shape, flat magnets ensure a greater contact surface with adjacent parts, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: They are often used in different devices, such as sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: Their flat shape simplifies mounting, especially when there's a need to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets permits designers greater flexibility in arranging them in devices, which is more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet may provide better stability, reducing the risk of sliding or rotating. It’s important to keep in mind that the optimal shape of the magnet is dependent on the given use and requirements. In certain cases, other shapes, such as cylindrical or spherical, may be a better choice.
How do magnets work? Magnets attract ferromagnetic materials, such as iron elements, nickel, materials with cobalt and alloys of metals with magnetic properties. Additionally, magnets may weaker affect some other metals, such as steel. Magnets are used in many fields.
Magnets work thanks to the properties of the magnetic field, which is generated by the movement of electric charges within their material. Magnetic fields of these objects creates attractive forces, which attract objects made of iron or other magnetic materials.

Magnets have two poles: north (N) and south (S), which attract each other when they are different. Similar poles, such as two north poles, act repelling on each other.
Due to these properties, magnets are often used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them ideal for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its size and the materials used.
Not all materials react to magnets, and examples of such substances are plastic, glass items, wood and precious stones. Additionally, magnets do not affect most metals, such as copper items, aluminum materials, gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless exposed to a very strong magnetic field.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards and even medical equipment, like pacemakers. Therefore, it is important to exercise caution when using magnets.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose power over time - after about 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic field very well,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Wide application in advanced technologically fields – find application in HDD drives, electric motors, medical devices or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, it is suggested using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Potential hazard associated with microscopic parts of magnets pose a threat, when accidentally ingested, which becomes significant in the context of child safety. Additionally, small elements of these devices can be problematic in medical diagnosis in case of swallowing.

Safety Precautions

Magnets made of neodymium are incredibly fragile, they easily fall apart and can become damaged.

Neodymium magnets are characterized by significant fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Depending on how large the neodymium magnets are, they can lead to a cut or a fracture.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are the strongest magnets ever invented. Their power can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

 Maintain neodymium magnets far from children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Pay attention!

In order to show why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98