MPL 20x10x1 / N38 - lamellar magnet
lamellar magnet
Catalog no 020126
GTIN: 5906301811329
length [±0,1 mm]
20 mm
Width [±0,1 mm]
10 mm
Height [±0,1 mm]
1 mm
Weight
1.5 g
Magnetization Direction
↑ axial
Load capacity
1.12 kg / 10.98 N
Magnetic Induction
87.15 mT
Coating
[NiCuNi] nickel
0.996 ZŁ with VAT / pcs + price for transport
0.810 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Give us a call
+48 22 499 98 98
if you prefer drop us a message by means of
request form
the contact section.
Lifting power as well as appearance of neodymium magnets can be checked using our
online calculation tool.
Order by 14:00 and we’ll ship today!
MPL 20x10x1 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- Their strength remains stable, and after approximately ten years, it drops only by ~1% (theoretically),
- They are very resistant to demagnetization caused by external magnetic sources,
- Because of the lustrous layer of gold, the component looks visually appealing,
- The outer field strength of the magnet shows remarkable magnetic properties,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for custom shaping as well as adjustment to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
- Key role in advanced technical fields – they are utilized in HDDs, rotating machines, clinical machines as well as technologically developed systems,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They can break when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally enhances its overall robustness,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to damp air can degrade. Therefore, for outdoor applications, we advise waterproof types made of plastic,
- Limited ability to create threads in the magnet – the use of a external casing is recommended,
- Safety concern from tiny pieces may arise, when consumed by mistake, which is crucial in the family environments. Additionally, small elements from these devices might complicate medical imaging when ingested,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Maximum lifting force for a neodymium magnet – what affects it?
The given strength of the magnet corresponds to the optimal strength, measured under optimal conditions, that is:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Lifting capacity in real conditions – factors
The lifting capacity of a magnet depends on in practice the following factors, from primary to secondary:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under a perpendicular pulling force, in contrast under shearing force the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate decreases the load capacity.
Exercise Caution with Neodymium Magnets
Neodymium magnets are the strongest magnets ever created, and their strength can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
It is important to maintain neodymium magnets out of reach from children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets may crack or crumble with careless connecting to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.
Neodymium magnetic are highly susceptible to damage, resulting in shattering.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Exercise caution!
To show why neodymium magnets are so dangerous, read the article - How dangerous are very powerful neodymium magnets?.
