MPL 200x30x30 / N38 - lamellar magnet
lamellar magnet
Catalog no 020125
GTIN/EAN: 5906301811312
length
200 mm [±0,1 mm]
Width
30 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
1350 g
Magnetization Direction
↑ axial
Load capacity
287.38 kg / 2819.19 N
Magnetic Induction
445.15 mT / 4451 Gs
Coating
[NiCuNi] Nickel
563.28 ZŁ with VAT / pcs + price for transport
457.95 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 22 499 98 98
otherwise send us a note via
inquiry form
the contact page.
Strength as well as form of magnets can be checked on our
our magnetic calculator.
Same-day shipping for orders placed before 14:00.
Technical data of the product - MPL 200x30x30 / N38 - lamellar magnet
Specification / characteristics - MPL 200x30x30 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020125 |
| GTIN/EAN | 5906301811312 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 200 mm [±0,1 mm] |
| Width | 30 mm [±0,1 mm] |
| Height | 30 mm [±0,1 mm] |
| Weight | 1350 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 287.38 kg / 2819.19 N |
| Magnetic Induction ~ ? | 445.15 mT / 4451 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical modeling of the magnet - report
The following information represent the result of a physical calculation. Values are based on algorithms for the class Nd2Fe14B. Actual parameters may deviate from the simulation results. Please consider these calculations as a supplementary guide for designers.
Table 1: Static force (force vs distance) - interaction chart
MPL 200x30x30 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
4451 Gs
445.1 mT
|
287.38 kg / 633.56 lbs
287380.0 g / 2819.2 N
|
critical level |
| 1 mm |
4241 Gs
424.1 mT
|
260.91 kg / 575.21 lbs
260910.0 g / 2559.5 N
|
critical level |
| 2 mm |
4028 Gs
402.8 mT
|
235.43 kg / 519.04 lbs
235433.0 g / 2309.6 N
|
critical level |
| 3 mm |
3818 Gs
381.8 mT
|
211.49 kg / 466.26 lbs
211490.2 g / 2074.7 N
|
critical level |
| 5 mm |
3412 Gs
341.2 mT
|
168.87 kg / 372.30 lbs
168870.4 g / 1656.6 N
|
critical level |
| 10 mm |
2539 Gs
253.9 mT
|
93.54 kg / 206.22 lbs
93539.2 g / 917.6 N
|
critical level |
| 15 mm |
1902 Gs
190.2 mT
|
52.48 kg / 115.70 lbs
52481.2 g / 514.8 N
|
critical level |
| 20 mm |
1457 Gs
145.7 mT
|
30.79 kg / 67.88 lbs
30789.8 g / 302.0 N
|
critical level |
| 30 mm |
920 Gs
92.0 mT
|
12.29 kg / 27.09 lbs
12288.2 g / 120.5 N
|
critical level |
| 50 mm |
456 Gs
45.6 mT
|
3.02 kg / 6.65 lbs
3016.4 g / 29.6 N
|
strong |
Table 2: Vertical load (vertical surface)
MPL 200x30x30 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
57.48 kg / 126.71 lbs
57476.0 g / 563.8 N
|
| 1 mm | Stal (~0.2) |
52.18 kg / 115.04 lbs
52182.0 g / 511.9 N
|
| 2 mm | Stal (~0.2) |
47.09 kg / 103.81 lbs
47086.0 g / 461.9 N
|
| 3 mm | Stal (~0.2) |
42.30 kg / 93.25 lbs
42298.0 g / 414.9 N
|
| 5 mm | Stal (~0.2) |
33.77 kg / 74.46 lbs
33774.0 g / 331.3 N
|
| 10 mm | Stal (~0.2) |
18.71 kg / 41.24 lbs
18708.0 g / 183.5 N
|
| 15 mm | Stal (~0.2) |
10.50 kg / 23.14 lbs
10496.0 g / 103.0 N
|
| 20 mm | Stal (~0.2) |
6.16 kg / 13.58 lbs
6158.0 g / 60.4 N
|
| 30 mm | Stal (~0.2) |
2.46 kg / 5.42 lbs
2458.0 g / 24.1 N
|
| 50 mm | Stal (~0.2) |
0.60 kg / 1.33 lbs
604.0 g / 5.9 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MPL 200x30x30 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
86.21 kg / 190.07 lbs
86214.0 g / 845.8 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
57.48 kg / 126.71 lbs
57476.0 g / 563.8 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
28.74 kg / 63.36 lbs
28738.0 g / 281.9 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
143.69 kg / 316.78 lbs
143690.0 g / 1409.6 N
|
Table 4: Steel thickness (substrate influence) - sheet metal selection
MPL 200x30x30 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
9.58 kg / 21.12 lbs
9579.3 g / 94.0 N
|
| 1 mm |
|
23.95 kg / 52.80 lbs
23948.3 g / 234.9 N
|
| 2 mm |
|
47.90 kg / 105.59 lbs
47896.7 g / 469.9 N
|
| 3 mm |
|
71.85 kg / 158.39 lbs
71845.0 g / 704.8 N
|
| 5 mm |
|
119.74 kg / 263.98 lbs
119741.7 g / 1174.7 N
|
| 10 mm |
|
239.48 kg / 527.97 lbs
239483.3 g / 2349.3 N
|
| 11 mm |
|
263.43 kg / 580.77 lbs
263431.7 g / 2584.3 N
|
| 12 mm |
|
287.38 kg / 633.56 lbs
287380.0 g / 2819.2 N
|
Table 5: Thermal stability (stability) - power drop
MPL 200x30x30 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
287.38 kg / 633.56 lbs
287380.0 g / 2819.2 N
|
OK |
| 40 °C | -2.2% |
281.06 kg / 619.63 lbs
281057.6 g / 2757.2 N
|
OK |
| 60 °C | -4.4% |
274.74 kg / 605.69 lbs
274735.3 g / 2695.2 N
|
|
| 80 °C | -6.6% |
268.41 kg / 591.75 lbs
268412.9 g / 2633.1 N
|
|
| 100 °C | -28.8% |
204.61 kg / 451.10 lbs
204614.6 g / 2007.3 N
|
Table 6: Two magnets (attraction) - field collision
MPL 200x30x30 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
732.71 kg / 1615.35 lbs
5 371 Gs
|
109.91 kg / 242.30 lbs
109907 g / 1078.2 N
|
N/A |
| 1 mm |
698.96 kg / 1540.95 lbs
8 694 Gs
|
104.84 kg / 231.14 lbs
104845 g / 1028.5 N
|
629.07 kg / 1386.85 lbs
~0 Gs
|
| 2 mm |
665.22 kg / 1466.57 lbs
8 481 Gs
|
99.78 kg / 219.99 lbs
99784 g / 978.9 N
|
598.70 kg / 1319.91 lbs
~0 Gs
|
| 3 mm |
632.29 kg / 1393.97 lbs
8 269 Gs
|
94.84 kg / 209.10 lbs
94844 g / 930.4 N
|
569.07 kg / 1254.57 lbs
~0 Gs
|
| 5 mm |
569.22 kg / 1254.92 lbs
7 846 Gs
|
85.38 kg / 188.24 lbs
85383 g / 837.6 N
|
512.30 kg / 1129.42 lbs
~0 Gs
|
| 10 mm |
430.56 kg / 949.22 lbs
6 823 Gs
|
64.58 kg / 142.38 lbs
64584 g / 633.6 N
|
387.50 kg / 854.29 lbs
~0 Gs
|
| 20 mm |
238.49 kg / 525.78 lbs
5 078 Gs
|
35.77 kg / 78.87 lbs
35774 g / 350.9 N
|
214.64 kg / 473.20 lbs
~0 Gs
|
| 50 mm |
48.45 kg / 106.82 lbs
2 289 Gs
|
7.27 kg / 16.02 lbs
7268 g / 71.3 N
|
43.61 kg / 96.13 lbs
~0 Gs
|
| 60 mm |
31.33 kg / 69.07 lbs
1 841 Gs
|
4.70 kg / 10.36 lbs
4700 g / 46.1 N
|
28.20 kg / 62.16 lbs
~0 Gs
|
| 70 mm |
21.09 kg / 46.49 lbs
1 510 Gs
|
3.16 kg / 6.97 lbs
3163 g / 31.0 N
|
18.98 kg / 41.84 lbs
~0 Gs
|
| 80 mm |
14.67 kg / 32.35 lbs
1 260 Gs
|
2.20 kg / 4.85 lbs
2201 g / 21.6 N
|
13.21 kg / 29.12 lbs
~0 Gs
|
| 90 mm |
10.50 kg / 23.15 lbs
1 066 Gs
|
1.58 kg / 3.47 lbs
1575 g / 15.5 N
|
9.45 kg / 20.83 lbs
~0 Gs
|
| 100 mm |
7.69 kg / 16.95 lbs
912 Gs
|
1.15 kg / 2.54 lbs
1154 g / 11.3 N
|
6.92 kg / 15.26 lbs
~0 Gs
|
Table 7: Hazards (electronics) - warnings
MPL 200x30x30 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 39.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 30.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 23.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 18.0 cm |
| Remote | 50 Gs (5.0 mT) | 16.5 cm |
| Payment card | 400 Gs (40.0 mT) | 5.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 4.5 cm |
Table 8: Collisions (cracking risk) - warning
MPL 200x30x30 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
17.45 km/h
(4.85 m/s)
|
15.86 J | |
| 30 mm |
26.16 km/h
(7.27 m/s)
|
35.64 J | |
| 50 mm |
33.12 km/h
(9.20 m/s)
|
57.12 J | |
| 100 mm |
46.56 km/h
(12.93 m/s)
|
112.90 J |
Table 9: Coating parameters (durability)
MPL 200x30x30 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MPL 200x30x30 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 221 734 Mx | 2217.3 µWb |
| Pc Coefficient | 0.45 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MPL 200x30x30 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 287.38 kg | Standard |
| Water (riverbed) |
329.05 kg
(+41.67 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical surface, the magnet retains only approx. 20-30% of its perpendicular strength.
2. Plate thickness effect
*Thin metal sheet (e.g. computer case) significantly limits the holding force.
3. Temperature resistance
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.45
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other proposals
Pros as well as cons of neodymium magnets.
Pros
- They do not lose strength, even after nearly 10 years – the decrease in strength is only ~1% (according to tests),
- They possess excellent resistance to magnetism drop due to opposing magnetic fields,
- Thanks to the reflective finish, the coating of Ni-Cu-Ni, gold-plated, or silver gives an visually attractive appearance,
- Neodymium magnets achieve maximum magnetic induction on a their surface, which allows for strong attraction,
- Neodymium magnets are characterized by very high magnetic induction on the magnet surface and can function (depending on the form) even at a temperature of 230°C or more...
- Thanks to versatility in shaping and the ability to adapt to client solutions,
- Huge importance in modern technologies – they find application in data components, drive modules, advanced medical instruments, as well as other advanced devices.
- Thanks to efficiency per cm³, small magnets offer high operating force, in miniature format,
Limitations
- To avoid cracks upon strong impacts, we recommend using special steel holders. Such a solution protects the magnet and simultaneously increases its durability.
- Neodymium magnets lose their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic or other material stable to moisture, in case of application outdoors
- Due to limitations in realizing threads and complicated shapes in magnets, we recommend using cover - magnetic holder.
- Possible danger resulting from small fragments of magnets are risky, in case of ingestion, which becomes key in the context of child safety. Furthermore, small components of these devices can disrupt the diagnostic process medical when they are in the body.
- Higher cost of purchase is a significant factor to consider compared to ceramic magnets, especially in budget applications
Lifting parameters
Detachment force of the magnet in optimal conditions – what affects it?
- on a base made of mild steel, perfectly concentrating the magnetic field
- possessing a thickness of at least 10 mm to avoid saturation
- with an ideally smooth touching surface
- with direct contact (no paint)
- for force applied at a right angle (pull-off, not shear)
- at temperature approx. 20 degrees Celsius
Practical lifting capacity: influencing factors
- Clearance – the presence of foreign body (rust, dirt, gap) interrupts the magnetic circuit, which reduces capacity steeply (even by 50% at 0.5 mm).
- Loading method – catalog parameter refers to pulling vertically. When attempting to slide, the magnet holds significantly lower power (typically approx. 20-30% of maximum force).
- Substrate thickness – to utilize 100% power, the steel must be sufficiently thick. Thin sheet restricts the lifting capacity (the magnet "punches through" it).
- Material composition – not every steel attracts identically. Alloy additives weaken the attraction effect.
- Surface condition – ground elements ensure maximum contact, which improves field saturation. Uneven metal reduce efficiency.
- Thermal conditions – NdFeB sinters have a negative temperature coefficient. When it is hot they lose power, and at low temperatures gain strength (up to a certain limit).
Lifting capacity testing was carried out on a smooth plate of suitable thickness, under a perpendicular pulling force, however under parallel forces the holding force is lower. In addition, even a small distance between the magnet and the plate lowers the load capacity.
Safe handling of neodymium magnets
Threat to navigation
GPS units and smartphones are highly sensitive to magnetic fields. Direct contact with a powerful NdFeB magnet can permanently damage the internal compass in your phone.
Magnet fragility
NdFeB magnets are sintered ceramics, meaning they are fragile like glass. Clashing of two magnets leads to them cracking into shards.
Thermal limits
Watch the temperature. Heating the magnet above 80 degrees Celsius will ruin its properties and pulling force.
Adults only
Absolutely store magnets away from children. Risk of swallowing is high, and the consequences of magnets connecting inside the body are tragic.
Medical interference
Warning for patients: Strong magnetic fields affect electronics. Maintain at least 30 cm distance or request help to work with the magnets.
Conscious usage
Handle magnets consciously. Their huge power can shock even experienced users. Plan your moves and respect their power.
Crushing risk
Pinching hazard: The attraction force is so immense that it can result in hematomas, crushing, and broken bones. Use thick gloves.
Dust explosion hazard
Machining of neodymium magnets carries a risk of fire risk. Magnetic powder oxidizes rapidly with oxygen and is hard to extinguish.
Electronic devices
Equipment safety: Strong magnets can damage data carriers and delicate electronics (heart implants, medical aids, timepieces).
Skin irritation risks
It is widely known that the nickel plating (standard magnet coating) is a strong allergen. If your skin reacts to metals, avoid touching magnets with bare hands or select coated magnets.
