MPL 13x10x5 / N35H - lamellar magnet
lamellar magnet
Catalog no 020119
GTIN/EAN: 5906301811251
length
13 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
4.88 g
Magnetization Direction
↑ axial
Load capacity
4.03 kg / 39.54 N
Magnetic Induction
369.32 mT / 3693 Gs
Coating
[NiCuNi] Nickel
2.58 ZŁ with VAT / pcs + price for transport
2.10 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 22 499 98 98
alternatively let us know using
request form
the contact page.
Force as well as appearance of a neodymium magnet can be analyzed on our
force calculator.
Order by 14:00 and we’ll ship today!
Technical data - MPL 13x10x5 / N35H - lamellar magnet
Specification / characteristics - MPL 13x10x5 / N35H - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020119 |
| GTIN/EAN | 5906301811251 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 13 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 4.88 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 4.03 kg / 39.54 N |
| Magnetic Induction ~ ? | 369.32 mT / 3693 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N35H
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 11.7-12.1 | kGs |
| remenance Br [min. - max.] ? | 1170-1210 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 17 | kOe |
| actual internal force iHc | ≥ 1353 | kA/m |
| energy density [min. - max.] ? | 33-35 | BH max MGOe |
| energy density [min. - max.] ? | 263-279 | BH max KJ/m |
| max. temperature ? | ≤ 120 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical modeling of the magnet - technical parameters
Presented information are the result of a physical simulation. Results are based on models for the class Nd2Fe14B. Operational conditions may deviate from the simulation results. Treat these data as a preliminary roadmap when designing systems.
Table 1: Static pull force (pull vs gap) - power drop
MPL 13x10x5 / N35H
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3691 Gs
369.1 mT
|
4.03 kg / 8.88 lbs
4030.0 g / 39.5 N
|
medium risk |
| 1 mm |
3152 Gs
315.2 mT
|
2.94 kg / 6.48 lbs
2938.4 g / 28.8 N
|
medium risk |
| 2 mm |
2595 Gs
259.5 mT
|
1.99 kg / 4.39 lbs
1991.8 g / 19.5 N
|
weak grip |
| 3 mm |
2089 Gs
208.9 mT
|
1.29 kg / 2.85 lbs
1291.2 g / 12.7 N
|
weak grip |
| 5 mm |
1321 Gs
132.1 mT
|
0.52 kg / 1.14 lbs
516.1 g / 5.1 N
|
weak grip |
| 10 mm |
455 Gs
45.5 mT
|
0.06 kg / 0.14 lbs
61.2 g / 0.6 N
|
weak grip |
| 15 mm |
193 Gs
19.3 mT
|
0.01 kg / 0.02 lbs
11.1 g / 0.1 N
|
weak grip |
| 20 mm |
97 Gs
9.7 mT
|
0.00 kg / 0.01 lbs
2.8 g / 0.0 N
|
weak grip |
| 30 mm |
34 Gs
3.4 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
weak grip |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Shear force (wall)
MPL 13x10x5 / N35H
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.81 kg / 1.78 lbs
806.0 g / 7.9 N
|
| 1 mm | Stal (~0.2) |
0.59 kg / 1.30 lbs
588.0 g / 5.8 N
|
| 2 mm | Stal (~0.2) |
0.40 kg / 0.88 lbs
398.0 g / 3.9 N
|
| 3 mm | Stal (~0.2) |
0.26 kg / 0.57 lbs
258.0 g / 2.5 N
|
| 5 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MPL 13x10x5 / N35H
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
1.21 kg / 2.67 lbs
1209.0 g / 11.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.81 kg / 1.78 lbs
806.0 g / 7.9 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.40 kg / 0.89 lbs
403.0 g / 4.0 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
2.02 kg / 4.44 lbs
2015.0 g / 19.8 N
|
Table 4: Material efficiency (saturation) - power losses
MPL 13x10x5 / N35H
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.40 kg / 0.89 lbs
403.0 g / 4.0 N
|
| 1 mm |
|
1.01 kg / 2.22 lbs
1007.5 g / 9.9 N
|
| 2 mm |
|
2.02 kg / 4.44 lbs
2015.0 g / 19.8 N
|
| 3 mm |
|
3.02 kg / 6.66 lbs
3022.5 g / 29.7 N
|
| 5 mm |
|
4.03 kg / 8.88 lbs
4030.0 g / 39.5 N
|
| 10 mm |
|
4.03 kg / 8.88 lbs
4030.0 g / 39.5 N
|
| 11 mm |
|
4.03 kg / 8.88 lbs
4030.0 g / 39.5 N
|
| 12 mm |
|
4.03 kg / 8.88 lbs
4030.0 g / 39.5 N
|
Table 5: Thermal resistance (stability) - thermal limit
MPL 13x10x5 / N35H
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.03 kg / 8.88 lbs
4030.0 g / 39.5 N
|
OK |
| 80 °C | -6.6% |
3.76 kg / 8.30 lbs
3764.0 g / 36.9 N
|
|
| 120 °C | -11.0% |
3.59 kg / 7.91 lbs
3586.7 g / 35.2 N
|
|
| 140 °C | -33.2% |
2.69 kg / 5.93 lbs
2692.0 g / 26.4 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field collision
MPL 13x10x5 / N35H
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
10.92 kg / 24.08 lbs
5 009 Gs
|
1.64 kg / 3.61 lbs
1638 g / 16.1 N
|
N/A |
| 1 mm |
9.43 kg / 20.80 lbs
6 862 Gs
|
1.42 kg / 3.12 lbs
1415 g / 13.9 N
|
8.49 kg / 18.72 lbs
~0 Gs
|
| 2 mm |
7.96 kg / 17.55 lbs
6 304 Gs
|
1.19 kg / 2.63 lbs
1194 g / 11.7 N
|
7.17 kg / 15.80 lbs
~0 Gs
|
| 3 mm |
6.60 kg / 14.56 lbs
5 740 Gs
|
0.99 kg / 2.18 lbs
990 g / 9.7 N
|
5.94 kg / 13.10 lbs
~0 Gs
|
| 5 mm |
4.36 kg / 9.62 lbs
4 667 Gs
|
0.65 kg / 1.44 lbs
655 g / 6.4 N
|
3.93 kg / 8.66 lbs
~0 Gs
|
| 10 mm |
1.40 kg / 3.08 lbs
2 642 Gs
|
0.21 kg / 0.46 lbs
210 g / 2.1 N
|
1.26 kg / 2.78 lbs
~0 Gs
|
| 20 mm |
0.17 kg / 0.37 lbs
910 Gs
|
0.02 kg / 0.05 lbs
25 g / 0.2 N
|
0.15 kg / 0.33 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
110 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
68 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
45 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
31 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
22 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MPL 13x10x5 / N35H
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 6.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 5.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 4.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 3.0 cm |
| Remote | 50 Gs (5.0 mT) | 3.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (cracking risk) - collision effects
MPL 13x10x5 / N35H
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
29.26 km/h
(8.13 m/s)
|
0.16 J | |
| 30 mm |
50.20 km/h
(13.94 m/s)
|
0.47 J | |
| 50 mm |
64.81 km/h
(18.00 m/s)
|
0.79 J | |
| 100 mm |
91.65 km/h
(25.46 m/s)
|
1.58 J |
Table 9: Corrosion resistance
MPL 13x10x5 / N35H
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 13x10x5 / N35H
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 4 919 Mx | 49.2 µWb |
| Pc Coefficient | 0.49 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MPL 13x10x5 / N35H
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 4.03 kg | Standard |
| Water (riverbed) |
4.61 kg
(+0.58 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Warning: On a vertical wall, the magnet holds just ~20% of its perpendicular strength.
2. Efficiency vs thickness
*Thin metal sheet (e.g. computer case) significantly limits the holding force.
3. Thermal stability
*For standard magnets, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.49
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View more offers
Advantages and disadvantages of rare earth magnets.
Benefits
- They retain full power for around 10 years – the loss is just ~1% (according to analyses),
- They maintain their magnetic properties even under strong external field,
- A magnet with a metallic silver surface has an effective appearance,
- They feature high magnetic induction at the operating surface, which improves attraction properties,
- Due to their durability and thermal resistance, neodymium magnets can operate (depending on the shape) even at high temperatures reaching 230°C or more...
- In view of the potential of accurate forming and adaptation to custom needs, NdFeB magnets can be modeled in a wide range of shapes and sizes, which makes them more universal,
- Significant place in innovative solutions – they are used in hard drives, electric motors, medical devices, also other advanced devices.
- Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications
Limitations
- At strong impacts they can crack, therefore we advise placing them in strong housings. A metal housing provides additional protection against damage and increases the magnet's durability.
- Neodymium magnets decrease their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- Magnets exposed to a humid environment can rust. Therefore while using outdoors, we recommend using water-impermeable magnets made of rubber, plastic or other material protecting against moisture
- Due to limitations in realizing threads and complex shapes in magnets, we propose using casing - magnetic mount.
- Health risk to health – tiny shards of magnets are risky, when accidentally swallowed, which gains importance in the context of child safety. Additionally, small components of these devices can disrupt the diagnostic process medical in case of swallowing.
- High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which increases costs of application in large quantities
Holding force characteristics
Best holding force of the magnet in ideal parameters – what affects it?
- on a block made of structural steel, optimally conducting the magnetic flux
- whose thickness is min. 10 mm
- with an ground touching surface
- with direct contact (without coatings)
- under axial application of breakaway force (90-degree angle)
- in stable room temperature
Magnet lifting force in use – key factors
- Gap between magnet and steel – every millimeter of distance (caused e.g. by varnish or unevenness) significantly weakens the magnet efficiency, often by half at just 0.5 mm.
- Direction of force – highest force is available only during pulling at a 90° angle. The force required to slide of the magnet along the plate is typically many times lower (approx. 1/5 of the lifting capacity).
- Metal thickness – thin material does not allow full use of the magnet. Part of the magnetic field penetrates through instead of generating force.
- Material composition – different alloys attracts identically. Alloy additives worsen the interaction with the magnet.
- Surface structure – the more even the surface, the larger the contact zone and higher the lifting capacity. Roughness creates an air distance.
- Heat – neodymium magnets have a negative temperature coefficient. When it is hot they lose power, and in frost gain strength (up to a certain limit).
Lifting capacity was assessed using a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, whereas under attempts to slide the magnet the load capacity is reduced by as much as 75%. Additionally, even a small distance between the magnet’s surface and the plate lowers the lifting capacity.
Warnings
Compass and GPS
A powerful magnetic field negatively affects the operation of magnetometers in phones and GPS navigation. Keep magnets near a smartphone to avoid breaking the sensors.
Adults only
These products are not toys. Swallowing multiple magnets can lead to them attracting across intestines, which constitutes a critical condition and necessitates urgent medical intervention.
Cards and drives
Very strong magnetic fields can corrupt files on credit cards, hard drives, and other magnetic media. Stay away of min. 10 cm.
Magnets are brittle
Protect your eyes. Magnets can explode upon violent connection, launching shards into the air. We recommend safety glasses.
Serious injuries
Large magnets can crush fingers in a fraction of a second. Do not place your hand betwixt two strong magnets.
Medical interference
Warning for patients: Powerful magnets disrupt electronics. Keep minimum 30 cm distance or request help to handle the magnets.
Permanent damage
Control the heat. Exposing the magnet above 80 degrees Celsius will permanently weaken its properties and pulling force.
Conscious usage
Be careful. Neodymium magnets attract from a distance and snap with huge force, often faster than you can react.
Fire risk
Fire hazard: Rare earth powder is highly flammable. Do not process magnets without safety gear as this may cause fire.
Allergic reactions
Medical facts indicate that the nickel plating (standard magnet coating) is a strong allergen. If you have an allergy, refrain from direct skin contact and select coated magnets.
