tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. Practically all magnesy in our store are available for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F400 GOLD

Where to purchase powerful magnet? Magnetic holders in airtight and durable steel casing are ideally suited for use in challenging weather conditions, including during rain and snow check...

magnetic holders

Holders with magnets can be applied to enhance manufacturing, underwater exploration, or finding space rocks made of metal see more...

We promise to ship ordered magnets on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SMZR 32x150 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140239

GTIN: 5906301813477

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

150 mm

Weight

935 g

492.00 with VAT / pcs + price for transport

400.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
400.00 ZŁ
492.00 ZŁ
price from 5 pcs
352.00 ZŁ
432.96 ZŁ

Can't decide what to choose?

Call us +48 888 99 98 98 if you prefer let us know through our online form the contact section.
Force and appearance of magnets can be reviewed using our our magnetic calculator.

Same-day processing for orders placed before 14:00.

SMZR 32x150 / N52 - magnetic separator with handle

Specification/characteristics SMZR 32x150 / N52 - magnetic separator with handle
properties
values
Cat. no.
140239
GTIN
5906301813477
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
150 mm [±0,1 mm]
Weight
935 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is crucial to choose separators with the appropriate magnetic strength to match the intended use, since a weak field may be not efficient, while an excessively strong one can be difficult to operate.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their consistent holding force, neodymium magnets have these key benefits:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (in laboratory conditions),
  • They protect against demagnetization induced by external magnetic influence effectively,
  • The use of a mirror-like nickel surface provides a eye-catching finish,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which increases their usage potential,
  • Wide application in modern technologies – they are utilized in HDDs, rotating machines, diagnostic apparatus as well as high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them useful in small systems

Disadvantages of magnetic elements:

  • They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks while also increases its overall strength,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment. For outdoor use, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
  • Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
  • Safety concern due to small fragments may arise, especially if swallowed, which is notable in the health of young users. Additionally, small elements from these devices can hinder health screening once in the system,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The given holding capacity of the magnet represents the highest holding force, measured in the best circumstances, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a polished side
  • in conditions of no clearance
  • under perpendicular detachment force
  • under standard ambient temperature

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, whereas under attempts to slide the magnet the load capacity is reduced by as much as fivefold. In addition, even a minimal clearance {between} the magnet’s surface and the plate reduces the load capacity.

Handle Neodymium Magnets with Caution

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will crack or crumble with careless joining to each other. You can't move them to each other. At a distance less than 10 cm you should have them very firmly.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnetic are extremely fragile, leading to their cracking.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Safety precautions!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98