SMZR 32x150 / N52 - magnetic separator with handle
magnetic separator with handle
Catalog no 140239
GTIN: 5906301813477
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
150 mm
Weight
935 g
492.00 ZŁ with VAT / pcs + price for transport
400.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Contact us by phone
+48 888 99 98 98
if you prefer let us know by means of
form
our website.
Parameters as well as shape of magnets can be calculated on our
our magnetic calculator.
Order by 14:00 and we’ll ship today!
SMZR 32x150 / N52 - magnetic separator with handle
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous magnetic power, neodymium magnets offer the following advantages:
- They have stable power, and over around 10 years their attraction force decreases symbolically – ~1% (according to theory),
- They are extremely resistant to demagnetization caused by external magnetic sources,
- In other words, due to the shiny silver coating, the magnet obtains an aesthetic appearance,
- The outer field strength of the magnet shows elevated magnetic properties,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their application range,
- Wide application in advanced technical fields – they find application in data storage devices, electric drives, medical equipment along with technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them ideal in miniature devices
Disadvantages of neodymium magnets:
- They may fracture when subjected to a strong impact. If the magnets are exposed to shocks, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and reinforces its overall strength,
- They lose power at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of protective material for outdoor use,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
- Possible threat due to small fragments may arise, when consumed by mistake, which is notable in the context of child safety. Additionally, small elements from these devices have the potential to disrupt scanning once in the system,
- In cases of mass production, neodymium magnet cost may be a barrier,
Magnetic strength at its maximum – what it depends on?
The given pulling force of the magnet corresponds to the maximum force, assessed in the best circumstances, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a smooth surface
- in conditions of no clearance
- under perpendicular detachment force
- at room temperature
What influences lifting capacity in practice
The lifting capacity of a magnet depends on in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of suitable thickness, under a perpendicular pulling force, in contrast under parallel forces the load capacity is reduced by as much as 75%. Additionally, even a minimal clearance {between} the magnet and the plate lowers the holding force.
Handle with Care: Neodymium Magnets
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Magnets are not toys, children should not play with them.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
If have a finger between or on the path of attracting magnets, there may be a large cut or even a fracture.
Neodymium magnets are extremely delicate, they easily fall apart as well as can crumble.
Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Do not bring neodymium magnets close to GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Pay attention!
So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.
