tel: +48 22 499 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our store's offer. All "neodymium magnets" on our website are available for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnets for treasure hunters F400 GOLD

Where to buy powerful neodymium magnet? Magnet holders in airtight and durable steel casing are perfect for use in challenging climate conditions, including during snow and rain read...

magnetic holders

Holders with magnets can be applied to facilitate manufacturing, exploring underwater areas, or finding space rocks from gold see...

Enjoy shipping of your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships today (order by 14:00)

SMZR 32x150 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140239

GTIN: 5906301813477

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

150 mm

Weight

935 g

492.00 with VAT / pcs + price for transport

400.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
400.00 ZŁ
492.00 ZŁ
price from 5 pcs
352.00 ZŁ
432.96 ZŁ

Looking for a better price?

Call us now +48 22 499 98 98 or contact us through inquiry form the contact page.
Lifting power along with structure of magnetic components can be checked with our force calculator.

Same-day processing for orders placed before 14:00.

SMZR 32x150 / N52 - magnetic separator with handle

Specification/characteristics SMZR 32x150 / N52 - magnetic separator with handle
properties
values
Cat. no.
140239
GTIN
5906301813477
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
150 mm [±0,1 mm]
Weight
935 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

A hand separator is a basic tool for quick metal identification. It enables material segregation in the yard. It can be used to collect nails and screws from hard-to-reach places.
The magnet 'catches' iron but remains indifferent to aluminum, copper, and brass. This is the simplest test to distinguish valuable non-ferrous metals from cheap steel.
The neodymium model offers powerful force with low weight, reducing arm fatigue. A lighter tool allows for longer work without wrist pain. The neodymium version is currently the standard in professional scrap yards.
The neodymium magnet is enclosed in a solid metal housing (steel or brass). The handle is designed not to slip in the hand. The tool is durable and prepared for hard work.
In this model, collected metal must be pulled off manually (wearing a work glove). We also offer versions where pulling the handle drops the collected material. Sliding is more effective than pulling perpendicularly.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their tremendous strength, neodymium magnets offer the following advantages:

  • They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (according to literature),
  • They protect against demagnetization induced by surrounding magnetic fields effectively,
  • By applying a reflective layer of silver, the element gains a clean look,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for fine forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Important function in modern technologies – they serve a purpose in hard drives, electromechanical systems, medical equipment or even high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which allows for use in compact constructions

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall strength,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment. If exposed to rain, we recommend using waterproof magnets, such as those made of non-metallic materials,
  • Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
  • Safety concern due to small fragments may arise, in case of ingestion, which is important in the context of child safety. Furthermore, minuscule fragments from these devices have the potential to disrupt scanning if inside the body,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Maximum lifting capacity of the magnetwhat affects it?

The given holding capacity of the magnet corresponds to the highest holding force, assessed in the best circumstances, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a polished side
  • in conditions of no clearance
  • under perpendicular detachment force
  • under standard ambient temperature

Lifting capacity in practice – influencing factors

In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under attempts to slide the magnet the lifting capacity is smaller. In addition, even a slight gap {between} the magnet and the plate lowers the holding force.

Handle Neodymium Magnets Carefully

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets are noted for being fragile, which can cause them to shatter.

Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

  Do not give neodymium magnets to youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will crack or crumble with careless connecting to each other. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Caution!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98