tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. Practically all "magnets" on our website are in stock for immediate purchase (check the list). Check out the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy powerful neodymium magnet? Magnet holders in solid and airtight steel enclosure are excellent for use in difficult weather, including during rain and snow more information...

magnets with holders

Holders with magnets can be used to enhance production processes, underwater exploration, or searching for space rocks from gold read...

Enjoy shipping of your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SMZR 32x150 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140239

GTIN: 5906301813477

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

150 mm

Weight

935 g

492.00 with VAT / pcs + price for transport

400.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
400.00 ZŁ
492.00 ZŁ
price from 5 pcs
352.00 ZŁ
432.96 ZŁ

Not sure which magnet to buy?

Call us +48 888 99 98 98 or let us know by means of form the contact section.
Specifications as well as structure of a magnet can be checked with our magnetic calculator.

Same-day shipping for orders placed before 14:00.

SMZR 32x150 / N52 - magnetic separator with handle

Specification/characteristics SMZR 32x150 / N52 - magnetic separator with handle
properties
values
Cat. no.
140239
GTIN
5906301813477
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
150 mm [±0,1 mm]
Weight
935 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The grip, typically comfortable, enables smooth maneuvering of the separator along the surface, which significantly boosts the efficiency of the process. Their key benefits include portability, ease of use and strong efficiency in removing small metal particles, such as chips or dust.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their superior magnetism, neodymium magnets have these key benefits:

  • They have stable power, and over around ten years their attraction force decreases symbolically – ~1% (in testing),
  • They remain magnetized despite exposure to strong external fields,
  • Because of the lustrous layer of nickel, the component looks visually appealing,
  • They have very high magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • The ability for accurate shaping and customization to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Wide application in cutting-edge sectors – they are used in data storage devices, electric motors, healthcare devices or even high-tech tools,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks while also increases its overall strength,
  • They lose magnetic force at high temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a damp environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of polymer,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing threads directly in the magnet,
  • Health risk due to small fragments may arise, especially if swallowed, which is significant in the health of young users. Moreover, small elements from these devices have the potential to hinder health screening after being swallowed,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Best holding force of the magnet in ideal parameterswhat affects it?

The given holding capacity of the magnet means the highest holding force, measured under optimal conditions, that is:

  • with mild steel, used as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • under perpendicular detachment force
  • at room temperature

Key elements affecting lifting force

In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under shearing force the holding force is lower. In addition, even a slight gap {between} the magnet’s surface and the plate lowers the lifting capacity.

Exercise Caution with Neodymium Magnets

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or in their path when they attract. Depending on how massive the neodymium magnets are, they can lead to a cut or a fracture.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnetic are especially fragile, resulting in shattering.

Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Be careful!

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98