MPL 10x10x4 / N38 - lamellar magnet
lamellar magnet
Catalog no 020112
GTIN/EAN: 5906301811183
length
10 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
3 g
Magnetization Direction
↑ axial
Load capacity
3.10 kg / 30.39 N
Magnetic Induction
360.85 mT / 3608 Gs
Coating
[NiCuNi] Nickel
1.538 ZŁ with VAT / pcs + price for transport
1.250 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
if you prefer contact us via
form
through our site.
Parameters as well as structure of magnets can be checked using our
force calculator.
Orders submitted before 14:00 will be dispatched today!
Technical parameters of the product - MPL 10x10x4 / N38 - lamellar magnet
Specification / characteristics - MPL 10x10x4 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020112 |
| GTIN/EAN | 5906301811183 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 10 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 3 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 3.10 kg / 30.39 N |
| Magnetic Induction ~ ? | 360.85 mT / 3608 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical simulation of the magnet - report
These values constitute the result of a physical analysis. Values rely on models for the class Nd2Fe14B. Real-world performance may differ. Treat these calculations as a preliminary roadmap for designers.
Table 1: Static force (pull vs distance) - power drop
MPL 10x10x4 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3606 Gs
360.6 mT
|
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
warning |
| 1 mm |
3035 Gs
303.5 mT
|
2.20 kg / 4.84 lbs
2195.5 g / 21.5 N
|
warning |
| 2 mm |
2436 Gs
243.6 mT
|
1.41 kg / 3.12 lbs
1413.8 g / 13.9 N
|
safe |
| 3 mm |
1900 Gs
190.0 mT
|
0.86 kg / 1.90 lbs
860.8 g / 8.4 N
|
safe |
| 5 mm |
1127 Gs
112.7 mT
|
0.30 kg / 0.67 lbs
302.7 g / 3.0 N
|
safe |
| 10 mm |
347 Gs
34.7 mT
|
0.03 kg / 0.06 lbs
28.8 g / 0.3 N
|
safe |
| 15 mm |
140 Gs
14.0 mT
|
0.00 kg / 0.01 lbs
4.6 g / 0.0 N
|
safe |
| 20 mm |
68 Gs
6.8 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
safe |
| 30 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
safe |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Slippage force (vertical surface)
MPL 10x10x4 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.62 kg / 1.37 lbs
620.0 g / 6.1 N
|
| 1 mm | Stal (~0.2) |
0.44 kg / 0.97 lbs
440.0 g / 4.3 N
|
| 2 mm | Stal (~0.2) |
0.28 kg / 0.62 lbs
282.0 g / 2.8 N
|
| 3 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
172.0 g / 1.7 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - vertical pull
MPL 10x10x4 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.93 kg / 2.05 lbs
930.0 g / 9.1 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.62 kg / 1.37 lbs
620.0 g / 6.1 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.31 kg / 0.68 lbs
310.0 g / 3.0 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.55 kg / 3.42 lbs
1550.0 g / 15.2 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MPL 10x10x4 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.31 kg / 0.68 lbs
310.0 g / 3.0 N
|
| 1 mm |
|
0.78 kg / 1.71 lbs
775.0 g / 7.6 N
|
| 2 mm |
|
1.55 kg / 3.42 lbs
1550.0 g / 15.2 N
|
| 3 mm |
|
2.33 kg / 5.13 lbs
2325.0 g / 22.8 N
|
| 5 mm |
|
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
| 10 mm |
|
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
| 11 mm |
|
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
| 12 mm |
|
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
Table 5: Thermal stability (material behavior) - resistance threshold
MPL 10x10x4 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
OK |
| 40 °C | -2.2% |
3.03 kg / 6.68 lbs
3031.8 g / 29.7 N
|
OK |
| 60 °C | -4.4% |
2.96 kg / 6.53 lbs
2963.6 g / 29.1 N
|
|
| 80 °C | -6.6% |
2.90 kg / 6.38 lbs
2895.4 g / 28.4 N
|
|
| 100 °C | -28.8% |
2.21 kg / 4.87 lbs
2207.2 g / 21.7 N
|
Table 6: Two magnets (attraction) - field collision
MPL 10x10x4 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.02 kg / 17.68 lbs
5 067 Gs
|
1.20 kg / 2.65 lbs
1203 g / 11.8 N
|
N/A |
| 1 mm |
6.85 kg / 15.11 lbs
6 667 Gs
|
1.03 kg / 2.27 lbs
1028 g / 10.1 N
|
6.17 kg / 13.59 lbs
~0 Gs
|
| 2 mm |
5.68 kg / 12.52 lbs
6 070 Gs
|
0.85 kg / 1.88 lbs
852 g / 8.4 N
|
5.11 kg / 11.27 lbs
~0 Gs
|
| 3 mm |
4.60 kg / 10.14 lbs
5 463 Gs
|
0.69 kg / 1.52 lbs
690 g / 6.8 N
|
4.14 kg / 9.13 lbs
~0 Gs
|
| 5 mm |
2.87 kg / 6.32 lbs
4 313 Gs
|
0.43 kg / 0.95 lbs
430 g / 4.2 N
|
2.58 kg / 5.69 lbs
~0 Gs
|
| 10 mm |
0.78 kg / 1.73 lbs
2 254 Gs
|
0.12 kg / 0.26 lbs
117 g / 1.2 N
|
0.70 kg / 1.55 lbs
~0 Gs
|
| 20 mm |
0.07 kg / 0.16 lbs
695 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.15 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
76 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (implants) - precautionary measures
MPL 10x10x4 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 3.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 2.5 cm |
| Remote | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MPL 10x10x4 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
32.61 km/h
(9.06 m/s)
|
0.12 J | |
| 30 mm |
56.15 km/h
(15.60 m/s)
|
0.36 J | |
| 50 mm |
72.49 km/h
(20.14 m/s)
|
0.61 J | |
| 100 mm |
102.52 km/h
(28.48 m/s)
|
1.22 J |
Table 9: Corrosion resistance
MPL 10x10x4 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 10x10x4 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 3 760 Mx | 37.6 µWb |
| Pc Coefficient | 0.46 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MPL 10x10x4 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 3.10 kg | Standard |
| Water (riverbed) |
3.55 kg
(+0.45 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical wall, the magnet holds just approx. 20-30% of its nominal pull.
2. Plate thickness effect
*Thin steel (e.g. 0.5mm PC case) severely reduces the holding force.
3. Heat tolerance
*For standard magnets, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.46
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See more products
Strengths as well as weaknesses of Nd2Fe14B magnets.
Benefits
- They retain full power for almost ten years – the drop is just ~1% (based on simulations),
- They show high resistance to demagnetization induced by presence of other magnetic fields,
- A magnet with a metallic gold surface has better aesthetics,
- They feature high magnetic induction at the operating surface, which improves attraction properties,
- Thanks to resistance to high temperature, they are capable of working (depending on the shape) even at temperatures up to 230°C and higher...
- Possibility of accurate forming as well as adapting to atypical needs,
- Wide application in advanced technology sectors – they are commonly used in HDD drives, brushless drives, advanced medical instruments, as well as industrial machines.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Limitations
- They are prone to damage upon heavy impacts. To avoid cracks, it is worth securing magnets in special housings. Such protection not only protects the magnet but also increases its resistance to damage
- When exposed to high temperature, neodymium magnets experience a drop in power. Often, when the temperature exceeds 80°C, their power decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Magnets exposed to a humid environment can rust. Therefore during using outdoors, we recommend using water-impermeable magnets made of rubber, plastic or other material protecting against moisture
- Limited ability of making nuts in the magnet and complex shapes - preferred is cover - magnet mounting.
- Health risk to health – tiny shards of magnets pose a threat, in case of ingestion, which is particularly important in the aspect of protecting the youngest. It is also worth noting that small elements of these products are able to complicate diagnosis medical in case of swallowing.
- With mass production the cost of neodymium magnets is a challenge,
Pull force analysis
Magnetic strength at its maximum – what contributes to it?
- using a base made of low-carbon steel, acting as a circuit closing element
- with a thickness no less than 10 mm
- characterized by smoothness
- with total lack of distance (without coatings)
- under vertical application of breakaway force (90-degree angle)
- at standard ambient temperature
Impact of factors on magnetic holding capacity in practice
- Gap between magnet and steel – even a fraction of a millimeter of separation (caused e.g. by veneer or unevenness) drastically reduces the pulling force, often by half at just 0.5 mm.
- Force direction – remember that the magnet has greatest strength perpendicularly. Under sliding down, the holding force drops drastically, often to levels of 20-30% of the nominal value.
- Element thickness – to utilize 100% power, the steel must be adequately massive. Thin sheet restricts the attraction force (the magnet "punches through" it).
- Chemical composition of the base – mild steel gives the best results. Alloy admixtures reduce magnetic permeability and holding force.
- Surface structure – the more even the surface, the better the adhesion and stronger the hold. Roughness creates an air distance.
- Operating temperature – NdFeB sinters have a negative temperature coefficient. At higher temperatures they lose power, and in frost they can be stronger (up to a certain limit).
Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the load capacity is reduced by as much as fivefold. Moreover, even a minimal clearance between the magnet’s surface and the plate decreases the lifting capacity.
Safe handling of NdFeB magnets
Heat sensitivity
Monitor thermal conditions. Heating the magnet to high heat will permanently weaken its magnetic structure and strength.
Physical harm
Large magnets can smash fingers instantly. Do not put your hand betwixt two attracting surfaces.
Conscious usage
Use magnets with awareness. Their powerful strength can shock even experienced users. Plan your moves and respect their force.
Phone sensors
GPS units and mobile phones are extremely susceptible to magnetic fields. Direct contact with a strong magnet can ruin the internal compass in your phone.
Keep away from children
These products are not suitable for play. Swallowing multiple magnets may result in them pinching intestinal walls, which poses a critical condition and requires immediate surgery.
Combustion hazard
Combustion risk: Neodymium dust is highly flammable. Do not process magnets in home conditions as this may cause fire.
Allergic reactions
It is widely known that nickel (the usual finish) is a common allergen. For allergy sufferers, avoid direct skin contact and select versions in plastic housing.
Material brittleness
Neodymium magnets are sintered ceramics, meaning they are prone to chipping. Collision of two magnets will cause them cracking into small pieces.
Threat to electronics
Intense magnetic fields can erase data on payment cards, HDDs, and storage devices. Keep a distance of min. 10 cm.
Life threat
For implant holders: Strong magnetic fields affect electronics. Maintain minimum 30 cm distance or request help to handle the magnets.
