Neodymium magnets: strength you're looking for

Need strong magnetic field? Our range includes wide selection of various shapes and sizes. They are ideal for domestic applications, garage and industrial tasks. See products available immediately.

check magnet catalog

Magnet fishing sets (searchers)

Start your adventure related to seabed exploration! Our double-handle grips (F200, F400) provide safety guarantee and huge lifting capacity. Stainless steel construction and strong lines will perform in rivers and lakes.

choose your water magnet

Magnetic mounting systems

Reliable solutions for mounting non-invasive. Threaded mounts (M8, M10, M12) provide quick improvement of work on warehouses. Perfect for installing lamps, detectors and ads.

see technical specs

🚚 Order by 14:00 – we'll ship today!

Dhit sp. z o.o.
Product available Ships in 2 days

MPL 10x10x4 / N38 - lamellar magnet

lamellar magnet

Catalog no 020112

GTIN/EAN: 5906301811183

5.00

length

10 mm [±0,1 mm]

Width

10 mm [±0,1 mm]

Height

4 mm [±0,1 mm]

Weight

3 g

Magnetization Direction

↑ axial

Load capacity

3.10 kg / 30.39 N

Magnetic Induction

360.85 mT / 3608 Gs

Coating

[NiCuNi] Nickel

1.538 with VAT / pcs + price for transport

1.250 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.250 ZŁ
1.538 ZŁ
price from 1125 pcs
1.125 ZŁ
1.384 ZŁ
price from 2250 pcs
1.100 ZŁ
1.353 ZŁ
Not sure about your choice?

Pick up the phone and ask +48 888 99 98 98 if you prefer contact us via form through our site.
Parameters as well as structure of magnets can be checked using our force calculator.

Orders submitted before 14:00 will be dispatched today!

Technical parameters of the product - MPL 10x10x4 / N38 - lamellar magnet

Specification / characteristics - MPL 10x10x4 / N38 - lamellar magnet

properties
properties values
Cat. no. 020112
GTIN/EAN 5906301811183
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
length 10 mm [±0,1 mm]
Width 10 mm [±0,1 mm]
Height 4 mm [±0,1 mm]
Weight 3 g
Magnetization Direction ↑ axial
Load capacity ~ ? 3.10 kg / 30.39 N
Magnetic Induction ~ ? 360.85 mT / 3608 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MPL 10x10x4 / N38 - lamellar magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Technical simulation of the magnet - report

These values constitute the result of a physical analysis. Values rely on models for the class Nd2Fe14B. Real-world performance may differ. Treat these calculations as a preliminary roadmap for designers.

Table 1: Static force (pull vs distance) - power drop
MPL 10x10x4 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 3606 Gs
360.6 mT
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
warning
1 mm 3035 Gs
303.5 mT
2.20 kg / 4.84 lbs
2195.5 g / 21.5 N
warning
2 mm 2436 Gs
243.6 mT
1.41 kg / 3.12 lbs
1413.8 g / 13.9 N
safe
3 mm 1900 Gs
190.0 mT
0.86 kg / 1.90 lbs
860.8 g / 8.4 N
safe
5 mm 1127 Gs
112.7 mT
0.30 kg / 0.67 lbs
302.7 g / 3.0 N
safe
10 mm 347 Gs
34.7 mT
0.03 kg / 0.06 lbs
28.8 g / 0.3 N
safe
15 mm 140 Gs
14.0 mT
0.00 kg / 0.01 lbs
4.6 g / 0.0 N
safe
20 mm 68 Gs
6.8 mT
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
safe
30 mm 23 Gs
2.3 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
safe
50 mm 6 Gs
0.6 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe

Table 2: Slippage force (vertical surface)
MPL 10x10x4 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.62 kg / 1.37 lbs
620.0 g / 6.1 N
1 mm Stal (~0.2) 0.44 kg / 0.97 lbs
440.0 g / 4.3 N
2 mm Stal (~0.2) 0.28 kg / 0.62 lbs
282.0 g / 2.8 N
3 mm Stal (~0.2) 0.17 kg / 0.38 lbs
172.0 g / 1.7 N
5 mm Stal (~0.2) 0.06 kg / 0.13 lbs
60.0 g / 0.6 N
10 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Wall mounting (sliding) - vertical pull
MPL 10x10x4 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.93 kg / 2.05 lbs
930.0 g / 9.1 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.62 kg / 1.37 lbs
620.0 g / 6.1 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.31 kg / 0.68 lbs
310.0 g / 3.0 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
1.55 kg / 3.42 lbs
1550.0 g / 15.2 N

Table 4: Material efficiency (saturation) - sheet metal selection
MPL 10x10x4 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.31 kg / 0.68 lbs
310.0 g / 3.0 N
1 mm
25%
0.78 kg / 1.71 lbs
775.0 g / 7.6 N
2 mm
50%
1.55 kg / 3.42 lbs
1550.0 g / 15.2 N
3 mm
75%
2.33 kg / 5.13 lbs
2325.0 g / 22.8 N
5 mm
100%
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
10 mm
100%
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
11 mm
100%
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
12 mm
100%
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N

Table 5: Thermal stability (material behavior) - resistance threshold
MPL 10x10x4 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
OK
40 °C -2.2% 3.03 kg / 6.68 lbs
3031.8 g / 29.7 N
OK
60 °C -4.4% 2.96 kg / 6.53 lbs
2963.6 g / 29.1 N
80 °C -6.6% 2.90 kg / 6.38 lbs
2895.4 g / 28.4 N
100 °C -28.8% 2.21 kg / 4.87 lbs
2207.2 g / 21.7 N

Table 6: Two magnets (attraction) - field collision
MPL 10x10x4 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Sliding Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 8.02 kg / 17.68 lbs
5 067 Gs
1.20 kg / 2.65 lbs
1203 g / 11.8 N
N/A
1 mm 6.85 kg / 15.11 lbs
6 667 Gs
1.03 kg / 2.27 lbs
1028 g / 10.1 N
6.17 kg / 13.59 lbs
~0 Gs
2 mm 5.68 kg / 12.52 lbs
6 070 Gs
0.85 kg / 1.88 lbs
852 g / 8.4 N
5.11 kg / 11.27 lbs
~0 Gs
3 mm 4.60 kg / 10.14 lbs
5 463 Gs
0.69 kg / 1.52 lbs
690 g / 6.8 N
4.14 kg / 9.13 lbs
~0 Gs
5 mm 2.87 kg / 6.32 lbs
4 313 Gs
0.43 kg / 0.95 lbs
430 g / 4.2 N
2.58 kg / 5.69 lbs
~0 Gs
10 mm 0.78 kg / 1.73 lbs
2 254 Gs
0.12 kg / 0.26 lbs
117 g / 1.2 N
0.70 kg / 1.55 lbs
~0 Gs
20 mm 0.07 kg / 0.16 lbs
695 Gs
0.01 kg / 0.02 lbs
11 g / 0.1 N
0.07 kg / 0.15 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
76 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
46 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
30 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
21 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
15 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
11 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Safety (HSE) (implants) - precautionary measures
MPL 10x10x4 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 5.5 cm
Hearing aid 10 Gs (1.0 mT) 4.5 cm
Timepiece 20 Gs (2.0 mT) 3.5 cm
Mobile device 40 Gs (4.0 mT) 2.5 cm
Remote 50 Gs (5.0 mT) 2.5 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 1.0 cm

Table 8: Impact energy (kinetic energy) - collision effects
MPL 10x10x4 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 32.61 km/h
(9.06 m/s)
0.12 J
30 mm 56.15 km/h
(15.60 m/s)
0.36 J
50 mm 72.49 km/h
(20.14 m/s)
0.61 J
100 mm 102.52 km/h
(28.48 m/s)
1.22 J

Table 9: Corrosion resistance
MPL 10x10x4 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Pc)
MPL 10x10x4 / N38

Parameter Value SI Unit / Description
Magnetic Flux 3 760 Mx 37.6 µWb
Pc Coefficient 0.46 Low (Flat)

Table 11: Hydrostatics and buoyancy
MPL 10x10x4 / N38

Environment Effective steel pull Effect
Air (land) 3.10 kg Standard
Water (riverbed) 3.55 kg
(+0.45 kg buoyancy gain)
+14.5%
Rust risk: This magnet has a standard nickel coating. After use in water, it must be dried and maintained immediately, otherwise it will rust!
1. Shear force

*Warning: On a vertical wall, the magnet holds just approx. 20-30% of its nominal pull.

2. Plate thickness effect

*Thin steel (e.g. 0.5mm PC case) severely reduces the holding force.

3. Heat tolerance

*For standard magnets, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.46

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical and environmental data
Chemical composition
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Sustainability
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 020112-2026
Magnet Unit Converter
Pulling force

Magnetic Induction

See more products

Model MPL 10x10x4 / N38 features a flat shape and professional pulling force, making it a perfect solution for building separators and machines. As a block magnet with high power (approx. 3.10 kg), this product is available immediately from our warehouse in Poland. Furthermore, its Ni-Cu-Ni coating protects it against corrosion in standard operating conditions, giving it an aesthetic appearance.
Separating strong flat magnets requires a technique based on sliding (moving one relative to the other), rather than forceful pulling apart. Watch your fingers! Magnets with a force of 3.10 kg can pinch very hard and cause hematomas. Using a screwdriver risks destroying the coating and permanently cracking the magnet.
They constitute a key element in the production of generators and material handling systems. They work great as fasteners under tiles, wood, or glass. Their rectangular shape facilitates precise gluing into milled sockets in wood or plastic.
Cyanoacrylate glues (super glue type) are good only for small magnets; for larger plates, we recommend resins. Double-sided tape cushions vibrations, which is an advantage when mounting in moving elements. Remember to clean and degrease the magnet surface before gluing, which significantly increases the adhesion of the glue to the nickel coating.
The magnetic axis runs through the shortest dimension, which is typical for gripper magnets. Thanks to this, it works best when "sticking" to sheet metal or another magnet with a large surface area. This is the most popular configuration for block magnets used in separators and holders.
The presented product is a neodymium magnet with precisely defined parameters: 10 mm (length), 10 mm (width), and 4 mm (thickness). It is a magnetic block with dimensions 10x10x4 mm and a self-weight of 3 g, ready to work at temperatures up to 80°C. The protective [NiCuNi] coating secures the magnet against corrosion.

Strengths as well as weaknesses of Nd2Fe14B magnets.

Benefits

Besides their exceptional field intensity, neodymium magnets offer the following advantages:
  • They retain full power for almost ten years – the drop is just ~1% (based on simulations),
  • They show high resistance to demagnetization induced by presence of other magnetic fields,
  • A magnet with a metallic gold surface has better aesthetics,
  • They feature high magnetic induction at the operating surface, which improves attraction properties,
  • Thanks to resistance to high temperature, they are capable of working (depending on the shape) even at temperatures up to 230°C and higher...
  • Possibility of accurate forming as well as adapting to atypical needs,
  • Wide application in advanced technology sectors – they are commonly used in HDD drives, brushless drives, advanced medical instruments, as well as industrial machines.
  • Compactness – despite small sizes they provide effective action, making them ideal for precision applications

Limitations

Disadvantages of neodymium magnets:
  • They are prone to damage upon heavy impacts. To avoid cracks, it is worth securing magnets in special housings. Such protection not only protects the magnet but also increases its resistance to damage
  • When exposed to high temperature, neodymium magnets experience a drop in power. Often, when the temperature exceeds 80°C, their power decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
  • Magnets exposed to a humid environment can rust. Therefore during using outdoors, we recommend using water-impermeable magnets made of rubber, plastic or other material protecting against moisture
  • Limited ability of making nuts in the magnet and complex shapes - preferred is cover - magnet mounting.
  • Health risk to health – tiny shards of magnets pose a threat, in case of ingestion, which is particularly important in the aspect of protecting the youngest. It is also worth noting that small elements of these products are able to complicate diagnosis medical in case of swallowing.
  • With mass production the cost of neodymium magnets is a challenge,

Pull force analysis

Magnetic strength at its maximum – what contributes to it?

The load parameter shown refers to the maximum value, recorded under ideal test conditions, namely:
  • using a base made of low-carbon steel, acting as a circuit closing element
  • with a thickness no less than 10 mm
  • characterized by smoothness
  • with total lack of distance (without coatings)
  • under vertical application of breakaway force (90-degree angle)
  • at standard ambient temperature

Impact of factors on magnetic holding capacity in practice

Effective lifting capacity is affected by specific conditions, including (from priority):
  • Gap between magnet and steel – even a fraction of a millimeter of separation (caused e.g. by veneer or unevenness) drastically reduces the pulling force, often by half at just 0.5 mm.
  • Force direction – remember that the magnet has greatest strength perpendicularly. Under sliding down, the holding force drops drastically, often to levels of 20-30% of the nominal value.
  • Element thickness – to utilize 100% power, the steel must be adequately massive. Thin sheet restricts the attraction force (the magnet "punches through" it).
  • Chemical composition of the base – mild steel gives the best results. Alloy admixtures reduce magnetic permeability and holding force.
  • Surface structure – the more even the surface, the better the adhesion and stronger the hold. Roughness creates an air distance.
  • Operating temperature – NdFeB sinters have a negative temperature coefficient. At higher temperatures they lose power, and in frost they can be stronger (up to a certain limit).

Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the load capacity is reduced by as much as fivefold. Moreover, even a minimal clearance between the magnet’s surface and the plate decreases the lifting capacity.

Safe handling of NdFeB magnets
Heat sensitivity

Monitor thermal conditions. Heating the magnet to high heat will permanently weaken its magnetic structure and strength.

Physical harm

Large magnets can smash fingers instantly. Do not put your hand betwixt two attracting surfaces.

Conscious usage

Use magnets with awareness. Their powerful strength can shock even experienced users. Plan your moves and respect their force.

Phone sensors

GPS units and mobile phones are extremely susceptible to magnetic fields. Direct contact with a strong magnet can ruin the internal compass in your phone.

Keep away from children

These products are not suitable for play. Swallowing multiple magnets may result in them pinching intestinal walls, which poses a critical condition and requires immediate surgery.

Combustion hazard

Combustion risk: Neodymium dust is highly flammable. Do not process magnets in home conditions as this may cause fire.

Allergic reactions

It is widely known that nickel (the usual finish) is a common allergen. For allergy sufferers, avoid direct skin contact and select versions in plastic housing.

Material brittleness

Neodymium magnets are sintered ceramics, meaning they are prone to chipping. Collision of two magnets will cause them cracking into small pieces.

Threat to electronics

Intense magnetic fields can erase data on payment cards, HDDs, and storage devices. Keep a distance of min. 10 cm.

Life threat

For implant holders: Strong magnetic fields affect electronics. Maintain minimum 30 cm distance or request help to handle the magnets.

Warning! Learn more about hazards in the article: Safety of working with magnets.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98