MPL 10x10x4 / N38 - neodymium magnet
lamellar magnet
catalog number 020112
GTIN: 5906301811183
length
10
mm [±0,1 mm]
width
10
mm [±0,1 mm]
height
4
mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
3.16 kg / 30.99 N
magnetic induction ~
360.85 mT / 3,608 Gs
max. temperature
≤ 80
°C
catalog number 020112
GTIN: 5906301811183
length
10 mm [±0,1 mm]
width
10 mm [±0,1 mm]
height
4 mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
3.16 kg / 30.99 N
magnetic induction ~
360.85 mT / 3,608 Gs
max. temperature
≤ 80 °C
1.80 ZŁ gross price (including VAT) / pcs +
1.46 ZŁ net price + 23% VAT / pcs
bulk discounts:
need more quantity?Don't know what to buy?
Give us a call tel: +48 22 499 98 98 or contact us through contact form on the contact page. You can check the strength and the appearance of neodymium magnets in our magnetic calculator magnetic calculator
Orders placed by 2:00 PM will be shipped on the same business day.
Specification: lamellar magnet 10x10x4 / N38 ↑ axial
Magnetic properties of the material N38
Physical properties of sintered neodymium magnets Nd2Fe14B
Thanks to their mighty power, flat magnets are regularly applied in devices that need strong holding power.
The standard temperature resistance of these magnets is 80°C, but with larger dimensions, this value can increase.
Additionally, flat magnets usually have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, for enhancing their strength.
The magnet labeled MPL 10x10x4 / N38 i.e. a magnetic force 3.16 kg weighing a mere 3.00 grams, making it the perfect choice for projects needing a flat magnet.
Contact surface: Due to their flat shape, flat magnets ensure a greater contact surface with other components, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: They are often applied in different devices, such as sensors, stepper motors, or speakers, where the flat shape is necessary for their operation.
Mounting: Their flat shape makes it easier mounting, particularly when it is required to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets gives the possibility designers greater flexibility in arranging them in devices, which can be more difficult with magnets of more complex shapes.
Stability: In some applications, the flat base of the flat magnet can provide better stability, reducing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet depends on the specific project and requirements. In some cases, other shapes, such as cylindrical or spherical, may be more appropriate.
Magnets have two main poles: north (N) and south (S), which attract each other when they are different. Similar poles, such as two north poles, repel each other.
Thanks to this principle of operation, magnets are regularly used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them ideal for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the materials used.
It should be noted that high temperatures can weaken the magnet's effect. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards or electronic devices sensitive to magnetic fields. For this reason, it is important to exercise caution when using magnets.
List recommended items
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from immense strength, neodymium magnets have the following advantages:
- They do not lose their power (of the magnet). After approximately 10 years, their strength decreases by only ~1% (theoretically),
- They are exceptionally resistant to demagnetization caused by an external magnetic field,
- In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
- They have exceptionally high magnetic induction on the surface of the magnet,
- By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
- Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in various forms and dimensions, which amplifies their universality in usage.
- Significant importance in modern technologies – are used in hard drives, electric motors, medical devices and various technologically advanced devices.
Disadvantages of neodymium magnets:
- They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
- Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
- They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
- The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
- Health risk arising from small pieces of magnets can be dangerous, if swallowed, which is particularly important in the aspect of protecting young children. Additionally, tiny parts of these devices have the potential to be problematic in medical diagnosis when they are in the body.
Safety Precautions
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
If you have a finger between or on the path of attracting magnets, there may be a large cut or even a fracture.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can shock you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Magnets made of neodymium are particularly delicate, which leads to their breakage.
Neodymium magnets are characterized by significant fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.