tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our offer. All "neodymium magnets" in our store are in stock for immediate purchase (check the list). See the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to buy powerful neodymium magnet? Magnet holders in airtight and durable steel enclosure are excellent for use in challenging weather, including during rain and snow see more...

magnets with holders

Magnetic holders can be used to enhance production, underwater discoveries, or locating meteors made of metal see...

Enjoy shipping of your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SMZR 32x125 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140238

GTIN: 5906301813460

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

125 mm

Weight

690 g

430.50 with VAT / pcs + price for transport

350.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
350.00 ZŁ
430.50 ZŁ
price from 5 pcs
329.00 ZŁ
404.67 ZŁ
price from 10 pcs
308.00 ZŁ
378.84 ZŁ

Need advice?

Call us +48 22 499 98 98 otherwise contact us via contact form the contact form page.
Specifications as well as form of a neodymium magnet can be calculated with our our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

SMZR 32x125 / N52 - magnetic separator with handle

Specification/characteristics SMZR 32x125 / N52 - magnetic separator with handle
properties
values
Cat. no.
140238
GTIN
5906301813460
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
125 mm [±0,1 mm]
Weight
690 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Such devices are especially useful in industries such as waste recovery, mining, or metal processing. Additionally, their design enables efficient maintenance of the captured particles, which significantly minimizes operational delay.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (according to literature),
  • Their ability to resist magnetic interference from external fields is notable,
  • By applying a bright layer of gold, the element gains a modern look,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for customized forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Significant impact in cutting-edge sectors – they find application in hard drives, electric drives, medical equipment along with sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them ideal in small systems

Disadvantages of NdFeB magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to shocks, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and reinforces its overall strength,
  • They lose strength at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of protective material for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
  • Potential hazard from tiny pieces may arise, especially if swallowed, which is significant in the family environments. It should also be noted that minuscule fragments from these products can interfere with diagnostics once in the system,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Detachment force of the magnet in optimal conditionswhat contributes to it?

The given holding capacity of the magnet represents the highest holding force, calculated in the best circumstances, that is:

  • with mild steel, serving as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with zero air gap
  • under perpendicular detachment force
  • at room temperature

Determinants of lifting force in real conditions

Practical lifting force is dependent on factors, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on the plate surface of 20 mm thickness, when a perpendicular force was applied, however under parallel forces the load capacity is reduced by as much as 75%. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the holding force.

Exercise Caution with Neodymium Magnets

Keep neodymium magnets away from TV, wallet, and computer HDD.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Depending on how huge the neodymium magnets are, they can lead to a cut or a fracture.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are especially delicate, resulting in damage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Safety rules!

So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98