SMZR 32x125 / N52 - magnetic separator with handle
magnetic separator with handle
Catalog no 140238
GTIN: 5906301813460
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
125 mm
Weight
690 g
430.50 ZŁ with VAT / pcs + price for transport
350.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Pick up the phone and ask
+48 888 99 98 98
or get in touch by means of
request form
the contact form page.
Parameters as well as appearance of magnets can be checked using our
magnetic calculator.
Same-day processing for orders placed before 14:00.
SMZR 32x125 / N52 - magnetic separator with handle
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous pulling force, neodymium magnets offer the following advantages:
- They have unchanged lifting capacity, and over around ten years their performance decreases symbolically – ~1% (in testing),
- They remain magnetized despite exposure to magnetic surroundings,
- Because of the brilliant layer of gold, the component looks visually appealing,
- They possess strong magnetic force measurable at the magnet’s surface,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to form),
- The ability for precise shaping and adaptation to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
- Important function in new technology industries – they are utilized in hard drives, electric drives, medical equipment or even sophisticated instruments,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time reinforces its overall robustness,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
- Limited ability to create internal holes in the magnet – the use of a housing is recommended,
- Safety concern from tiny pieces may arise, if ingested accidentally, which is significant in the context of child safety. Furthermore, minuscule fragments from these assemblies might complicate medical imaging after being swallowed,
- In cases of large-volume purchasing, neodymium magnet cost is a challenge,
Maximum lifting capacity of the magnet – what affects it?
The given strength of the magnet corresponds to the optimal strength, determined in ideal conditions, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a smooth surface
- with no separation
- under perpendicular detachment force
- at room temperature
What influences lifting capacity in practice
Practical lifting force is determined by elements, by priority:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, however under parallel forces the holding force is lower. In addition, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.
Precautions
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Keep neodymium magnets away from GPS and smartphones.
Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets made of neodymium are highly delicate, they easily break as well as can become damaged.
Magnets made of neodymium are highly fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Neodymium magnets bounce and also clash mutually within a distance of several to around 10 cm from each other.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Exercise caution!
So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.
