e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our store's offer. All magnesy neodymowe on our website are available for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnet for searching F300 GOLD

Where to purchase powerful neodymium magnet? Magnetic holders in airtight, solid steel enclosure are perfect for use in variable and difficult climate conditions, including during snow and rain see more...

magnets with holders

Holders with magnets can be used to enhance production, underwater exploration, or searching for space rocks from gold read...

We promise to ship your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 60x20x5 / N38 - ring magnet

ring magnet

Catalog no 030204

GTIN: 5906301812210

5

Diameter [±0,1 mm]

60 mm

internal diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

5 mm

Weight

47.12 g

Magnetization Direction

↑ axial

Load capacity

5.7 kg / 55.9 N

Magnetic Induction

175.24 mT

Coating

[NiCuNi] nickel

47.99 with VAT / pcs + price for transport

39.02 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
39.02 ZŁ
47.99 ZŁ
price from 20 pcs
36.68 ZŁ
45.11 ZŁ
price from 70 pcs
34.34 ZŁ
42.24 ZŁ

Do you have trouble choosing?

Call us now +48 888 99 98 98 or let us know via contact form through our site.
Force as well as shape of a magnet can be checked on our online calculation tool.

Order by 14:00 and we’ll ship today!

MP 60x20x5 / N38 - ring magnet

Specification/characteristics MP 60x20x5 / N38 - ring magnet
properties
values
Cat. no.
030204
GTIN
5906301812210
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
60 mm [±0,1 mm]
internal diameter Ø
20 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
47.12 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
5.7 kg / 55.9 N
Magnetic Induction ~ ?
175.24 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium magnets MP 60x20x5 / N38 in a ring form are commonly used in various industries due to their unique properties. Thanks to a powerful magnetic field of 5.7 kg, which can be described as strength, they are key in applications that require high magnetic power in a compact space. Applications of MP 60x20x5 / N38 magnets include electrical mechanisms, generating systems, sound devices, and several other devices that use magnets for generating motion or storing energy. Despite their significant strength, they have a relatively low weight of 47.12 grams, which makes them more convenient to use compared to bulkier alternatives.
The operation of ring magnets results from their unique atomic structure. In the production process, neodymium atoms are arranged appropriately, which allows for generating a strong and precise magnetic field. This makes them perfect for devices such as stepper motors or industrial robots. Additionally, ring magnets are resistant to demagnetization.
Ring magnets have a wide range of applications in many industries, such as production of electronic devices, such as speakers and electric motors, the automotive industry, e.g., in the construction of electric motors, and medicine, where they are used in precision diagnostic devices. Thanks to their temperature resistance and precision makes them indispensable in challenging industrial conditions.
Ring magnets stand out high magnetic strength, ability to work in extreme conditions, precise control of the magnetic field. Their unique ring form allows for application in devices requiring concentrated magnetic fields. Additionally, these magnets are more durable than traditional ferrite magnets, which has made them popular in advanced technologies and industrial applications.
Ring magnets perform excellently across a wide range of temperatures. Their magnetic properties remain stable, as long as the temperature does not exceed the Curie point. They are more resistant to loss of magnetism than traditional ferrite magnets. Because of this, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A neodymium ring magnet N50 and N52 is a powerful and highly strong metal object designed as a ring, providing high force and universal applicability. Attractive price, fast shipping, stability and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (according to literature),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • The use of a mirror-like gold surface provides a refined finish,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • With the option for tailored forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Significant impact in modern technologies – they are utilized in HDDs, rotating machines, medical equipment and other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them ideal in compact constructions

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to shocks, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time increases its overall robustness,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a moist environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of rubber,
  • Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
  • Possible threat from tiny pieces may arise, especially if swallowed, which is notable in the protection of children. Additionally, miniature parts from these assemblies may interfere with diagnostics when ingested,
  • Due to expensive raw materials, their cost is considerably higher,

Maximum lifting capacity of the magnetwhat it depends on?

The given pulling force of the magnet means the maximum force, measured under optimal conditions, that is:

  • with mild steel, serving as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • at room temperature

Determinants of practical lifting force of a magnet

Practical lifting force is dependent on factors, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, however under attempts to slide the magnet the holding force is lower. Additionally, even a small distance {between} the magnet and the plate reduces the lifting capacity.

Exercise Caution with Neodymium Magnets

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are the most powerful magnets ever created, and their strength can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Neodymium magnets will bounce and clash together within a radius of several to almost 10 cm from each other.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are incredibly fragile, they easily break as well as can crumble.

Magnets made of neodymium are extremely delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Exercise caution!

To show why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98