tel: +48 22 499 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our offer. Practically all magnesy on our website are available for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to buy strong magnet? Holders with magnets in solid and airtight steel casing are perfect for use in difficult climate conditions, including snow and rain see more...

magnetic holders

Magnetic holders can be used to improve production, underwater exploration, or searching for meteors made of metal see more...

We promise to ship ordered magnets on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x400 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130470

GTIN: 5906301813132

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

400 mm

Weight

0.01 g

1 205.40 with VAT / pcs + price for transport

980.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
980.00 ZŁ
1 205.40 ZŁ
price from 3 pcs
931.00 ZŁ
1 145.13 ZŁ
price from 5 pcs
882.00 ZŁ
1 084.86 ZŁ

Need advice?

Pick up the phone and ask +48 888 99 98 98 otherwise get in touch via form the contact page.
Parameters along with form of a neodymium magnet can be estimated using our force calculator.

Order by 14:00 and we’ll ship today!

SM 25x400 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x400 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130470
GTIN
5906301813132
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
400 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are embedded in a construction made of stainless steel usually AISI304. In this way, it is possible to efficiently separate ferromagnetic particles from the mixture. A fundamental component of its operation is the use of repulsion of magnetic poles N and S, which allows magnetic substances to be attracted. The thickness of the magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to segregate ferromagnetic elements. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers find application in the food sector to clear metallic contaminants, including iron fragments or iron dust. Our rollers are made from acid-resistant steel, AISI 304, suitable for contact with food.
Magnetic rollers, often called magnetic separators, are used in food production, metal separation as well as waste processing. They help in extracting iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of neodymium magnets anchored in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Generally it is believed that the stronger the magnet, the more efficient it is. But, the strength of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be short. On the other hand, in the case of a thicker magnet, the force lines will be extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, most often stainless steel is utilized, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, type AISI 316 steel is recommended due to its excellent corrosion resistance.
Magnetic rollers are characterized by their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other separators that often use more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The outcome is verified in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth regularly cleaning them from contaminants, avoiding extreme temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Magnetic field measurements should be carried out once every 24 months. Care should be taken, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their exceptional magnetic power, neodymium magnets offer the following advantages:

  • They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • Thanks to the shiny finish and nickel coating, they have an visually attractive appearance,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which broadens their functional possibilities,
  • Wide application in advanced technical fields – they are used in data storage devices, electromechanical systems, healthcare devices as well as other advanced devices,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall robustness,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of synthetic coating for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
  • Potential hazard from tiny pieces may arise, if ingested accidentally, which is significant in the context of child safety. Furthermore, miniature parts from these assemblies can complicate medical imaging if inside the body,
  • Due to expensive raw materials, their cost is relatively high,

Handle with Care: Neodymium Magnets

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to insert fingers between magnets or in their path when attract. Magnets, depending on their size, can even cut off a finger or there can be a significant pressure or even a fracture.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

  Neodymium magnets should not be around youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Magnets made of neodymium are extremely fragile, resulting in breaking.

Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Safety rules!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98