SM 25x400 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130470
GTIN: 5906301813132
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
400 mm
Weight
0.01 g
1205.40 ZŁ with VAT / pcs + price for transport
980.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have trouble choosing?
Pick up the phone and ask
+48 22 499 98 98
or contact us through
inquiry form
our website.
Weight as well as form of magnetic components can be verified on our
modular calculator.
Same-day shipping for orders placed before 14:00.
SM 25x400 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their tremendous strength, neodymium magnets offer the following advantages:
- Their power is durable, and after around ten years, it drops only by ~1% (theoretically),
- They are extremely resistant to demagnetization caused by external field interference,
- Thanks to the polished finish and silver coating, they have an aesthetic appearance,
- They possess intense magnetic force measurable at the magnet’s surface,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which increases their functional possibilities,
- Key role in modern technologies – they serve a purpose in data storage devices, electric drives, diagnostic apparatus as well as other advanced devices,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage while also increases its overall resistance,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing complex structures directly in the magnet,
- Possible threat due to small fragments may arise, if ingested accidentally, which is notable in the protection of children. It should also be noted that minuscule fragments from these magnets may complicate medical imaging once in the system,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Maximum lifting force for a neodymium magnet – what affects it?
The given strength of the magnet corresponds to the optimal strength, calculated in the best circumstances, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- under perpendicular detachment force
- under standard ambient temperature
Practical aspects of lifting capacity – factors
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured by applying a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular pulling force, whereas under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the holding force.
Precautions
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets will crack or crumble with careless joining to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnets are highly fragile, they easily break as well as can become damaged.
Neodymium magnets are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets can demagnetize at high temperatures.
While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Do not give neodymium magnets to youngest children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Safety precautions!
So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.
