tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. All "magnets" in our store are available for immediate purchase (check the list). See the magnet pricing for more details check the magnet price list

Magnet for water searching F300 GOLD

Where to purchase very strong neodymium magnet? Magnetic holders in airtight and durable steel enclosure are ideally suited for use in challenging weather, including during snow and rain read...

magnetic holders

Magnetic holders can be applied to facilitate manufacturing, exploring underwater areas, or locating meteorites from gold see...

We promise to ship ordered magnets if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x400 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130470

GTIN: 5906301813132

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

400 mm

Weight

0.01 g

1 205.40 with VAT / pcs + price for transport

980.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
980.00 ZŁ
1 205.40 ZŁ
price from 3 pcs
931.00 ZŁ
1 145.13 ZŁ
price from 5 pcs
882.00 ZŁ
1 084.86 ZŁ

Need help making a decision?

Call us now +48 22 499 98 98 or drop us a message using request form through our site.
Parameters as well as shape of a magnet can be analyzed on our force calculator.

Same-day shipping for orders placed before 14:00.

SM 25x400 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x400 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130470
GTIN
5906301813132
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
400 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are embedded in a construction made of stainless steel mostly AISI304. As a result, it is possible to efficiently remove ferromagnetic elements from different substances. A fundamental component of its operation is the repulsion of magnetic poles N and S, which causes magnetic substances to be targeted. The thickness of the magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to segregate ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers find application in the food sector to remove metallic contaminants, including iron fragments or iron dust. Our rods are built from acid-resistant steel, EN 1.4301, intended for use in food.
Magnetic rollers, otherwise cylindrical magnets, are used in metal separation, food production as well as recycling. They help in removing iron dust during the process of separating metals from other wastes.
Our magnetic rollers are built with a neodymium magnet anchored in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded openings, which enables easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the stronger the magnet, the better. However, the effectiveness of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be more compressed. By contrast, when the magnet is thick, the force lines are longer and extend over a greater distance.
For making the casings of magnetic separators - rollers, frequently stainless steel is used, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, type AISI 316 steel is highly recommended due to its exceptional corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other devices that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve the need for regular cleaning, higher cost, and potential installation challenges.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and lose their power. Testing of the rollers should be carried out every two years. Caution should be taken during use, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional strength, neodymium magnets offer the following advantages:

  • Their power is maintained, and after around ten years, it drops only by ~1% (according to research),
  • They are very resistant to demagnetization caused by external field interference,
  • Because of the reflective layer of silver, the component looks visually appealing,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which broadens their usage potential,
  • Wide application in advanced technical fields – they are used in hard drives, rotating machines, diagnostic apparatus or even technologically developed systems,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks and increases its overall robustness,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create threads in the magnet – the use of a housing is recommended,
  • Health risk due to small fragments may arise, especially if swallowed, which is important in the family environments. Additionally, miniature parts from these magnets can interfere with diagnostics once in the system,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Handle Neodymium Magnets with Caution

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

 It is important to maintain neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If you have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or a fracture.

Neodymium magnetic are extremely delicate, they easily fall apart as well as can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Caution!

So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98