tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. All magnesy on our website are available for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnet for searching F300 GOLD

Where to buy very strong magnet? Holders with magnets in solid and airtight steel enclosure are excellent for use in challenging weather, including in the rain and snow more information...

magnetic holders

Magnetic holders can be used to improve production processes, underwater exploration, or locating meteorites made of ore see more...

We promise to ship your order on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x150 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130358

GTIN: 5906301813064

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

150 mm

Weight

830 g

528.90 with VAT / pcs + price for transport

430.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
430.00 ZŁ
528.90 ZŁ
price from 10 pcs
408.50 ZŁ
502.46 ZŁ
price from 15 pcs
387.00 ZŁ
476.01 ZŁ

Need help making a decision?

Pick up the phone and ask +48 22 499 98 98 alternatively send us a note using form through our site.
Force along with structure of a magnet can be calculated using our our magnetic calculator.

Same-day processing for orders placed before 14:00.

SM 32x150 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x150 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130358
GTIN
5906301813064
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
150 mm [±0,1 mm]
Weight
830 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are placed in a casing made of stainless steel mostly AISI304. As a result, it is possible to effectively separate ferromagnetic particles from different substances. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be targeted. The thickness of the magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic elements. If the cans are ferromagnetic, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are employed in the food industry to clear metallic contaminants, including iron fragments or iron dust. Our rollers are made from durable acid-resistant steel, EN 1.4301, suitable for contact with food.
Magnetic rollers, otherwise cylindrical magnets, are employed in metal separation, food production as well as waste processing. They help in extracting iron dust during the process of separating metals from other wastes.
Our magnetic rollers are built with neodymium magnets anchored in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded holes - 18 mm, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in materials, N42 as well as N52.
Generally it is believed that the greater the magnet's power, the more effective. Nevertheless, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines are short. On the other hand, in the case of a thicker magnet, the force lines will be longer and reach further.
For making the casings of magnetic separators - rollers, most often stainless steel is utilized, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater environment, type AISI 316 steel is highly recommended due to its outstanding corrosion resistance.
Magnetic bars stand out for their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other devices that often use complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. Disadvantages may include higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, it’s worth regularly cleaning them from deposits, avoiding extreme temperatures above 80 degrees, and protecting them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Testing of the rollers is recommended be carried out once every 24 months. Care should be taken, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their consistent magnetism, neodymium magnets have these key benefits:

  • They do not lose their even over nearly 10 years – the reduction of lifting capacity is only ~1% (theoretically),
  • They show strong resistance to demagnetization from external field exposure,
  • Thanks to the polished finish and gold coating, they have an visually attractive appearance,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which expands their functional possibilities,
  • Wide application in cutting-edge sectors – they serve a purpose in data storage devices, electric drives, medical equipment and other advanced devices,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to external force, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall robustness,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is difficult,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is important in the family environments. Furthermore, minuscule fragments from these magnets might complicate medical imaging after being swallowed,
  • Due to the price of neodymium, their cost is relatively high,

Maximum magnetic pulling forcewhat it depends on?

The given strength of the magnet represents the optimal strength, measured in ideal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a polished side
  • with no separation
  • in a perpendicular direction of force
  • in normal thermal conditions

Practical lifting capacity: influencing factors

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured by applying a polished steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, however under shearing force the lifting capacity is smaller. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnetic are particularly delicate, which leads to shattering.

Neodymium magnets are characterized by significant fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 It is essential to keep neodymium magnets out of reach from youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets may crack or alternatively crumble with uncontrolled connecting to each other. You can't move them to each other. At a distance less than 10 cm you should hold them very strongly.

Pay attention!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98