SM 32x175 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130353
GTIN: 5906301813019
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
175 mm
Weight
940 g
528.90 ZŁ with VAT / pcs + price for transport
430.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Call us now
+48 22 499 98 98
alternatively get in touch through
inquiry form
the contact form page.
Parameters as well as form of a neodymium magnet can be estimated using our
magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
SM 32x175 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their tremendous field intensity, neodymium magnets offer the following advantages:
- Their magnetic field is durable, and after around 10 years, it drops only by ~1% (theoretically),
- They protect against demagnetization induced by external magnetic fields remarkably well,
- The use of a polished nickel surface provides a refined finish,
- Magnetic induction on the surface of these magnets is very strong,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their functional possibilities,
- Key role in new technology industries – they are utilized in computer drives, rotating machines, healthcare devices along with technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them ideal in miniature devices
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage while also increases its overall strength,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of plastic for outdoor use,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
- Safety concern related to magnet particles may arise, when consumed by mistake, which is significant in the health of young users. Additionally, miniature parts from these products have the potential to disrupt scanning once in the system,
- In cases of large-volume purchasing, neodymium magnet cost may be a barrier,
Highest magnetic holding force – what contributes to it?
The given holding capacity of the magnet represents the highest holding force, assessed in the best circumstances, namely:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- under perpendicular detachment force
- under standard ambient temperature
Practical aspects of lifting capacity – factors
The lifting capacity of a magnet depends on in practice the following factors, from primary to secondary:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured using a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under shearing force the holding force is lower. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the load capacity.
Exercise Caution with Neodymium Magnets
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets can become demagnetized at high temperatures.
In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a significant injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a severe pressure or even a fracture.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Magnets made of neodymium are especially delicate, which leads to their breakage.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Keep neodymium magnets far from children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Warning!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.