e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our offer. Practically all "magnets" in our store are in stock for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnet for searching F300 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in airtight, solid enclosure are excellent for use in difficult, demanding climate conditions, including during snow and rain more...

magnets with holders

Holders with magnets can be applied to facilitate production, underwater discoveries, or finding meteorites made of ore read...

We promise to ship ordered magnets on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x175 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130353

GTIN: 5906301813019

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

175 mm

Weight

940 g

528.90 with VAT / pcs + price for transport

430.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
430.00 ZŁ
528.90 ZŁ
price from 10 pcs
408.50 ZŁ
502.46 ZŁ
price from 15 pcs
387.00 ZŁ
476.01 ZŁ

Not sure what to buy?

Pick up the phone and ask +48 22 499 98 98 alternatively get in touch using inquiry form the contact section.
Strength as well as form of a neodymium magnet can be analyzed using our online calculation tool.

Same-day shipping for orders placed before 14:00.

SM 32x175 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x175 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130353
GTIN
5906301813019
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
175 mm [±0,1 mm]
Weight
940 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are welded in a construction made of stainless steel mostly AISI304. As a result, it is possible to precisely segregate ferromagnetic elements from the mixture. An important element of its operation is the use of repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be targeted. The thickness of the magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to segregate ferromagnetic particles. If the cans are ferromagnetic, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in food production to clear metallic contaminants, such as iron fragments or iron dust. Our rods are built from durable acid-resistant steel, EN 1.4301, suitable for contact with food.
Magnetic rollers, often called magnetic separators, are employed in metal separation, food production as well as waste processing. They help in eliminating iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are built with neodymium magnets embedded in a tube made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 and N52.
Generally it is believed that the greater the magnet's power, the more efficient it is. However, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and specific needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines are short. On the other hand, in the case of a thicker magnet, the force lines will be longer and reach further.
For creating the casings of magnetic separators - rollers, usually stainless steel is employed, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, AISI 316 steel is recommended due to its exceptional anti-corrosion properties.
Magnetic bars stand out for their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other separators that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators include among others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. Disadvantages may include higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, it’s worth regularly cleaning them from deposits, avoiding high temperatures up to 80°C, and protecting them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can oxidize and lose their power. Testing of the rollers is recommended be carried out once every 24 months. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • Their power is durable, and after around 10 years, it drops only by ~1% (theoretically),
  • They protect against demagnetization induced by surrounding magnetic fields effectively,
  • Thanks to the polished finish and silver coating, they have an visually attractive appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • With the right combination of magnetic alloys, they reach significant thermal stability, enabling operation at or above 230°C (depending on the form),
  • The ability for precise shaping and adaptation to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
  • Significant impact in modern technologies – they are utilized in hard drives, rotating machines, diagnostic apparatus or even high-tech tools,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time increases its overall strength,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create internal holes in the magnet – the use of a housing is recommended,
  • Safety concern from tiny pieces may arise, in case of ingestion, which is crucial in the context of child safety. Moreover, minuscule fragments from these devices might interfere with diagnostics after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum holding power of the magnet – what contributes to it?

The given pulling force of the magnet means the maximum force, calculated in a perfect environment, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a polished side
  • in conditions of no clearance
  • with vertical force applied
  • in normal thermal conditions

Magnet lifting force in use – key factors

The lifting capacity of a magnet depends on in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the load capacity is reduced by as much as fivefold. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the holding force.

Be Cautious with Neodymium Magnets

Keep neodymium magnets away from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

  Neodymium magnets should not be around children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

In the case of placing a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnetic are highly susceptible to damage, resulting in their cracking.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Exercise caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98