tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our offer. All "neodymium magnets" in our store are available for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnets for water searching F300 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in airtight, solid enclosure are ideally suited for use in difficult climate conditions, including during rain and snow more information...

magnetic holders

Magnetic holders can be used to improve manufacturing, underwater exploration, or locating space rocks from gold see more...

Enjoy delivery of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MP 20x8x6 / N38 - neodymium magnet

ring magnet

catalog number 030189

GTIN: 5906301812067

5.0

external diameter Ø

20 mm [±0,1 mm]

internal diameter Ø

8 mm [±0,1 mm]

height

6 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

2.74 kg / 26.87 N

magnetic induction ~

196.23 mT / 1,962 Gs

max. temperature

≤ 80 °C

5.17 gross price (including VAT) / pcs +

4.20 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
4.20 ZŁ
5.17 ZŁ
price from 143 pcs
3.95 ZŁ
4.86 ZŁ
price from 524 pcs
3.70 ZŁ
4.55 ZŁ

Want to talk about magnets?

Call us tel: +48 22 499 98 98 or get in touch via form on our website. You can check the mass as well as the appearance of magnet in our force calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: ring magnet 20x8x6 / N38 ↑ axial

Characteristics: ring magnet 20x8x6 / N38 ↑ axial
Properties
Values
catalog number
030189
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
external diameter Ø
20 mm [±0,1 mm]
internal diameter Ø
8 mm [±0,1 mm]
height
6 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
2.74 kg / 26.87 N
magnetic induction ~ ?
196.23 mT / 1,962 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
16.96 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Due to unique properties, MP 20x8x6 / N38 in a ring form finds extensive use in various industries. Thanks to a powerful magnetic field of 2.74 kg, which can be described as strength, they are very helpful in applications that require strong magnetism in a compact space. Applications of MP 20x8x6 / N38 magnets include electric motors, generators, audio systems, and numerous other devices that use magnets for generating motion or energy storage. Despite their powerful strength, they have a comparatively low weight of 16.96 grams, which makes them more practical compared to bulkier alternatives.
Ring magnets work due to their atomic structure. Their properties arise from a controlled production process, including sintering and magnetization, which allows for generating a strong and precise magnetic field. This makes them perfect for devices such as stepper motors or industrial robots. Moreover, their resistance to high temperatures and demagnetization makes them indispensable in industry.
They are used in various fields of technology and industry, such as electronics, e.g., in the production of speakers or electric motors, automotive, where they are used in brushless electric motors, and medicine, where they are used in precision diagnostic devices. Thanks to their temperature resistance and precision makes them ideal for technologically advanced applications.
Ring magnets stand out high magnetic strength, resistance to high temperatures, precise control of the magnetic field. Their unique ring form allows for application in devices requiring concentrated magnetic fields. Moreover, these magnets are significantly stronger and more versatile than ferrite counterparts, making them an ideal choice in the automotive, electronics, and medical industries.
Thanks to their resistance to high temperatures, ring magnets operate reliably even in tough conditions. Their magnetic properties remain stable, as long as the temperature does not exceed the Curie point. They are more resistant to loss of magnetism than traditional ferrite magnets. For this reason, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.

List recommended items

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic field very well,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in many variants of shapes or sizes, which expands the range of their possible uses.
  • Significant importance in modern technologies – find application in computer drives, electric motors, medical equipment or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Health risk associated with microscopic parts of magnets can be dangerous, when accidentally ingested, which becomes significant in the aspect of protecting young children. Additionally, small elements of these products are able to be problematic in medical diagnosis in case of swallowing.

Handle with Care: Neodymium Magnets

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets are noted for being fragile, which can cause them to become damaged.

Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will break. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, can even cut off a finger or alternatively there can be a serious pressure or even a fracture.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98